CHEMICALLY MODIFIED BIOCHAR FOR BIODIESEL

PRODUCTION

BY

D. M. J. K. K. DISSANAYAKE

DEPARTMENT OF BIOSYSTEMS TECHNOLOGY

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2021

ABSTRACT

Biodiesel is gaining much attention as an alternative for the increasing demand for fossil fuels. To increase the rate of reaction, homogenous catalysts are still used commercially to make biodiesel, which causes separation and waste neutralization issues and needs the use of costly refined oil as a feedstock. Modern heterogeneous catalysts have many remarkable and tunable features such as non-corrosive, easy to separate, recyclable, high porosity, and large surface. Rice husk based biochar is a carbonaceous material made from the thermochemical conversion of biomass. It can be chemically modified with treating acid solutions or alkali solutions. Acid treated Rice husk based biochar has more surface area and pore volume, compared to alkali treated Rice husk based biochar. Nanotechnological synthetic protocols can aid in the design and modification of catalysts surfaces to produce biodiesel and to respond to the activity of heterogeneous catalysts. The alkali treated biochar can use more times than the acid treated biochar. However, both catalysts derived from rice husk have good catalytic performance in biodiesel production.

Key words: Rice husk based biochar, Acid treated, Alkali treated, Catalyst, Biodiesel

INDEL OF CONTENTS	TA	BL	E	ЭF	CON	TENTS
-------------------	----	----	---	----	-----	-------

ABSTRACTi
ACKNOWLEDGEMENTii
TABLE OF CONTENTSiii
LIST OF TABLES
LIST OF FIGURES
ABBREVIATIONSix
CHAPTER 01 INTRODUCTION1
1.1 Objectives
CHAPTER 02 LITERATURE REVIEW7
2.1 Transaction toward biofuels7
2.2 Biodiesel fuel
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production10
 2.2 Biodiesel fuel
2.2 Biodiesel fuel 9 2.2.1 Raw materials for biodiesel production 10 2.2.2 Reactions of catalyst in biodiesel production 11 2.2.2.1 Reaction of esterification 12
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production102.2.2 Reactions of catalyst in biodiesel production112.2.2.1 Reaction of esterification122.2.2.2 Reaction of transesterification12
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production102.2.2 Reactions of catalyst in biodiesel production112.2.2.1 Reaction of esterification122.2.2.2 Reaction of transesterification122.2.3 Types of catalysts in biodiesel production13
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production102.2.2 Reactions of catalyst in biodiesel production112.2.2.1 Reaction of esterification122.2.2.2 Reaction of transesterification122.2.3 Types of catalysts in biodiesel production132.2.3.1 Enzyme based catalysts13
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production102.2.2 Reactions of catalyst in biodiesel production112.2.2.1 Reaction of esterification122.2.2.2 Reaction of transesterification122.2.3 Types of catalysts in biodiesel production132.2.3.1 Enzyme based catalysts132.2.3.2 Homogeneous catalysts14
2.2 Biodiesel fuel92.2.1 Raw materials for biodiesel production102.2.2 Reactions of catalyst in biodiesel production112.2.2.1 Reaction of esterification122.2.2.2 Reaction of transesterification122.2.3 Types of catalysts in biodiesel production132.2.3.1 Enzyme based catalysts132.2.3.2 Homogeneous catalysts142.2.3.3 Heterogeneous catalysts14

2.3.1 Importance of biochar based catalyst16
2.3.2 Physiochemical characteristics of biochar
2.4 Rice husk based biochar as a catalyst
2.4.1 Elements of rice husk
2.4.2 Importance of rice husk as the feedstock for biochar
2.4.3 Production of rice husk based biochar
2.4.4 Importance of nanoparticles in rice husk based biochar
2.5 Chemical activation of rice husk based biochar
2.5.1 Activation with acid
2.5.2 Activation with alkali
2.6 Characteristics of rice husk based biochar
2.6.1 Acid treated rice husk based biochar
2.6.1.1 The morphology
2.6.1.2 The textural properties
2.6.1.3 The framework vibration
2.6.1.4 The elemental composition
2.6.1.5 The thermal stability
2.6.1.6 Diffraction pattern
2.6.1.7 The strong and total acidity
2.6.2 Alkali treated rice husk based biochar
2.6.2.1 The morphology
2.6.2.2 The textural properties

2.6.2.3 The framework vibration
2.6.2.4 The elemental composition
2.6.2.5 The thermal stability
2.6.2.6 Diffraction pattern
2.6.2.7 The strong and total basicity
2.7 Catalytic activity of rice husk based biochar
2.7.1 Acid treated rice husk based biochar
2.7.1.1 Effect of catalyst amount
2.7.1.2 Leachability of the catalyst
2.7.1.3 Reusability of the catalyst
2.7.1.4 Performance of the catalyst
2.7.2 The catalytic activity of alkali treated rice husk
2.7.2.1 Effect of catalyst amount
2.7.2.2 Leachability of the catalyst
2.7.2.3 Reusability of the catalyst
2.7.2.4 Performance of the catalyst53
CHAPTER 03 CONCLUSION
REFERENCES

4

LIST OF TABLES

Table 2.1 : Comparison between diesel and biodiesel based on the ASTM	10
Table 2.2 : Analysis of surface area and pore structure	25
Table 2.3 : Elemental composition	27
Table 2.4 : The acidity of NiSO4/SiO2	30
Table 2.5 : Textural properties of rice husk silica and alkali metals silicate	32
Table 2.6 : Textural characteristics of sodium silicate produced from calcined rice	
husk at various temperatures	33
Table 2.7 : Elemental composition of Na2SiO3 catalysts	36

LIST OF FIGURES

Figure 2.1 : Biomass to biofuel conversion pathways
Figure 2.2 : Reaction of biodiesel production: (a) Transesterification of glyceride via
catalyst; (b) Esterification of FFA and alcohol via a catalyst
Figure 2.3 : Rice plant, rice, rice husk, rice husk ash, and produced silica
nanoparticles in digital and SEM image
Figure 2.4 : Morphology of NS300, NS500, and NS70023
Figure 2.5 : FTIR spectra of different catalysts
Figure 2.6 : XRD patterns of NiSO4 treated catalyst at different temperatures 29
Figure 2.7 : XRD patterns of calcined rice husk silica and NiSO4 rice husk silica 29
Figure 2.8 : SEM image of (a) RHBB, (b) KOH treated RHBB, (c) catalyst of
300CaO700
Figure 2.9 : FTIR spectra of (a) KOH treated RHBB, (b) catalyst of 30CaO700 34
Figure 2.10 : FTIR of rice husk ash and samples of calcined
Figure 2.11 : XPS of (a) KOH treated RHBB, (b) catalyst of 30CaO70036
Figure 2.13 : TG-DTG profiles
Figure 2.12 : TG-DTA curves of NaOH treated RHBB
Figure 2.14 : XRD pattern of alkali metals silicate: (a) Rice husk silica (b) K2SiO3,
(c) Na2SiO3, (d) Li2SiO3
Figure 2.15 : XRD pattern of NaOH treated biochar
Figure 2.16 : Effect of catalyst amount on ME conversion
Figure 2.17 : The quantity of NiSO4 rice husk catalyst influence on the ME content
Figure 2.18 : Leachability of SO3H treated rice husk char
Figure 2.19 : The catalyst's reusability

Figure 2.20 : (a) Esterification activity of SO3H rice husk char and Amberlyst-15 (b)
FAME yield from esterification and transesterification using SO3H rice husk char
and Amberlyst-15 catalysts
Figure 2.21 : Effect of catalyst amount in transesterification
Figure 2.22 : Leaching content of Ca2+ of catalysts
Figure 2.23 : XRD profiles of (a) fresh and (b) recycled catalysts
Figure 2.24 : Na leaching of used and fresh catalyst
Figure 2.25 : Effect of regenerated alkali metal silicate in ME content
Figure 2.26 : Catalyst leachability
Figure 2.27 : Reusability of Li2SiO3, Na2SiO3 and K2SiO3, catalyst
Figure 2.28 : Reusability of catalyst and Na ion leaching
Figure 2.29 : Reusability of the rice husk catalyst of 30CaO700 and pure CaO 52
Figure 2.30 : Comparison of catalyst efficiency