REVIEW ON ROLE OF MICROBES IN CARBON SEQUSTRATION

BY

R.M.SHASHIKALA MADUWANTHI

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY, SRI LANKA

ABSTRACT

The soil organic carbon (SOC) pool is the key indicator of soil health and quality which in turn plays a vital role to soil sustainability.carbon sequestration is the process of storing carbon in carbon pool.which occur throught biological ,chemical and physical process. This changes accelerated by changes in land use and agricultural practices and also specially by microorganisms. This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contribution to soil C storage is directly related to microbial community dynamics and the balance the balance between formation and degradation of microbial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Crop rotations ,reduced or no-tillage practices, organic farming, and cover crops increase total microbial biomass enhancing the accumulation of MOM. A quantitative and qualitative improvement of SOM is generally observed in agro ecosystems favoring a fungal-dominated community. In the present review we focus on the greenhouse gas CO2 with relevance to its effect on plant associated beneficial and pathogenic microorganisms in terrestrial ecosystems. Role of these microorganisms in belowground nutrient cycling and soil aggregation is discussed with reference to soil C-sequestration. This review demonstrates that eCO2 influence the richness, composition and structure of soil microbial community and the influence is more on active microbial communities and in the vicinity of roots. High C:N ratio under co² favors fungi with wider C:N ratio and nutrient acquisition ability and biological nitrogen fixers. The ecosystems with fungal-dominated soil communities may have higher C retention than bacterial dominated soil communities. However, soil C-sequestration through plant growth, is strongly controlled by availability of nitrogen and nutrients required for biological nitrogen fixation. Nitrogenous and other chemical fertilizers show positive effect on Csequestration but carry a carbon cost. Promotion of biological nitrogen fixers, and nutrient solubilizers and mobilizers may help in maintaining soil nutrient balance for higher C-sequestration

Key words : carbon sequestration, soil microbes, soil organic carbon, soil properties ,fertility

TABLE OF CONTENT

Contents	
ABSTRACT	4
ABBRIVIATION	5
ACKNOWLEDGEMENT	6
TABLE OF CONTENT	7
CHAPTER 1	9
INTRODUCTION	9
CHAPTER 2	13
LITERATURE REVIEW	13
2.1 Role of Microbes in Carbon Sequestration	13
2.2 Types of Carbon Sequestration	15
2.2.1 NON Biological Carbon Sequestration	16
2.2.2 Biological Carbon sequestration	16
2.4 Soil Health	20
2.5 Soil Microbes	21
2.5.3 Bacteria	21
2.5.4. Clostridium	22
2.5.5. Archea	22
2.5.6. Algae	22
2.6.1 Microbial Growth Efficency	23
2.6.2 Microbial Activity	24
2.6.3 Microbial Community Structure	26
2.6.4 Microbial ratio	27
2.6.5 Soil Microbial Biomass	27
2.6.6. The rate at which microbial by products are decomposed by other microorgan	
2.6 Microbial Strategies For Enhancing Carbon Sequestration	
2.7.1 Fungal and bacterial dominance for carbon sequestration	
2.7.2 Mycorrhizal association for C-sequestration	
2.7.3 Carbon Sequestration by Microalgae	
2.7.4 Effect of glomaline in aggregate stability	
2.7.5 Carbon Sequestration By Microalgae in paddy and non paddy soil	
2.7.6 Oligotrophic and copiotroph for carbon sequestration	
2.8.1 Formation of Microbial Derived Soil Organic Matter	
2.8.2 Formation of Microbially Derived Soil Organic Matter	39

2.8.3 Degradation of Microbially Derived organic Matter	44
2.8.4 Chemical Extraction of Microbial-Derived Soil Organic Matter	47
2.8 Management practice effect on microbial biomass and microbial derived organ matter 48	ic
2.9.1Crop Rotation	48
2.9.2 Tillage	49
2.9.3 Soil Water and Crop Management	50
2.9.4 Intergrated Nutrient Management	51
2.9.5 Ley Farming	52
2.9.6 Restorative crops	52
2.10 Impact Of Organic Matter On Soil Chemical Properties	58
CHAPTER 3	61
3.1 Conclusion	61

0