ASSESSMENT OF KALU RIVER BASIN WATER QUALITY BASED ON THE WATER QUALITY INDEX

BY

H.M.D. VISHWANI CHANDRASIRI

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

ABSTRACT

This study aimed to assess the water quality of the Kalu Ganga Basin using the Water Quality Index (WQI) method. Water samples were collected from three different locations within the basin, and various physicochemical parameters such as pH, Turbidity, and Biological Oxygen Demand (BOD), Electrical conductivity (EC), Dissolved Oxygen (DO), Ammonia, Total Alkalinity, Total Hardness, Chemical Oxygen Demand (COD), Total Iron, Sulphate, Nitrate were measured. The WQI was calculated using the weighted arithmetic mean method, and the results were analyzed using descriptive statistics.

The results showed that the WQI values varied across the three locations, with the highest mean value recorded at kandana (118.7), followed by Ilimba (98.38) and Raw Kalu ganga (72.41). The study revealed that the water quality in the Kalu Ganga Basin was below the good water quality, as all WQI values fell within the "good" and "poor" category. However, the study identified some areas for improvement, particularly in the Raw Kalu Ganga area, which had a lower WQI value compared to the other two locations. The results can be used in policy and decision-making regarding water resource management and conservation efforts in the area.

Key words: CEA standard, Electrical Conductivity, Kalu Ganga, Water Quality Index.

TABLE OF CONTENTS

ABSTRACT II	Ι
ACKNOWLEDGEMENTIV	V
LIST OF FIGURESVII	
LIST OF TABLESIX	X
ABBREVIATIONS	X
CHAPTER 1	1
INTRODUCTION	1
1.1 Background	1
1.2 Kalu Ganga	2
1.3 Problem Identification	4
1.4 Objective	4
CHAPTER 2	5
LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Water quality index	5
2.3 History of water quality index	7
2.3.1Public indices	7
2.3.2 Specific consumption indices	7
2.3.3 Designing or planning indices	7

2.3.4 Statistical indices	8
2.4 Major Water Quality Index Models	8
2.4.1 Canadian council of ministers of the environment water quality index	8
2.4.2National Sanitation Foundation Water Quality Index (NSF WQI)	10
2.4.3 Oregon Water Quality Index (OWQI):	11
2.4.4 Australian and New Zealand Guidelines for Fresh and Marine Water	
Quality (ANZECC/ARMCANZ)	12
CHAPTER 3	14
MATERIALS AND METHODS	14
3.1 Introduction	14
3.2 Materials	14
3.2.1 Study area	14
3.3 Method	16
3.3.1 Sample collection	-16
3.3.2 Research design	-16
3.3.2 Sample Analysis	-17
3.3.2.1 pH Test	-19
3.3.2.2 Electrical conductivity test	-19
3.3.2.3 Turbidity Test	-20
3.3.2.4 Ammonia test	-20
3.3.2.5 Dissolved Oxygen test	-21
3.3.2.6 Chloride Test	-23

3.3.2.7 Total Alkalinity Test	24
3.3.2.8 Total Hardness Test	26
3.3.2.9 Chemical oxygen demand	27
3.3.2.10 Nitrate Test	28
3.3.2.11 Iron Test	28
3.3.2.12 Sulphate Test	29
3.3.3 Data analysis	29
CHAPTER 4	32
RESULTS AND DISCUSSION	32
4.1 Introduction	32
4.2 Water quality variation at Ilimba Area	33
4.2.2 Water quality of Raw Kalu Ganga	38
4.2.3 Water quality of Kandana area of Kalu Ganga	41
4.8 Water Quality Index of Kalu Ganga Basin	43
CHAPTER 5	45
CONCLUSION	45
CHAPTER 6	47
REFERENCES	47
APPENDIX	51

LIST OF FIGURES

Figure 3.1. Kalu Ganga Catchment Area (Nandalal & Ratnayake, 2011)	15
Figure 3.2. Kethhena Intake (source: Google earth pro)	15
Figure 3.3. Ilimba thotupola and Kandana intake points (source: Google earth pro)	15
Figure 4.4. water quality index of Kalu ganga basin	44

LIST OF TABLES

Table 2.1. NSF Water Quality Index Ranges
Table 3.2. Methods used to Measure Water Quality Parameters
Table 3.3 Weights Assigned for Parameters
Table 4.4. Minimum, Maximum, and Mean Values of The Water Quality at Ilimba
Area of The Kalu Kanga Basin
Table 4. 5. Tolerance Limits of Water Quality Parameters. (SLS 614:2013) 34
Table 4.6: Minimum, Maximum, And Mean Values of The Water Quality at Raw
Kalu Ganga
Table 4. 7. Minimum, Maximum, and Mean Values of The Water Quality At
Kandana Area of Kalu Ganga41