GROWTH AND YIELD PERFORMANCE OF OKRA FERTILIZED WITH AZOLLA AND COW DUNG LIQUID

FERTILIZER

2023

BY

I.V.N.THAMEERA

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2023

ABSTRACT

This research was conducted to evaluate the efficiency of a liquid organic fertilizer using Azolla (Azolla pinnata) and cow dung on growth and yield of okra. The experiment was carried out during February 2023 to April 2023 at the Faculty of Science, Eastern University Sri Lanka. The study was designed with five treatments and four replicates. Treatments are T₁- Control (recommended amount inorganic fertilizer by Department of Agriculture (DOA), T₂- 2/3 of recommended inorganic fertilizer by DOA and two times organic liquid fertilizer application, $T_3 - 2/3$ of recommended inorganic fertilizer by DOA and three times organic liquid fertilizer application, T₄ - 2/3 of recommended inorganic fertilizer by Department of Agriculture and four times organic liquid fertilizer application and T₅ – Four times application of organic liquid fertilizer. All other agronomic practices were followed based on DOA recommendation. Plant height, number of leaves per plant and leaf area were measured in 2 weeks interval. Plant fresh weight and pod weight were measured at the time of harvesting. Analysis of Variance was performed to determine significant difference among treatments (p < 0.05).

The results showed that application of Azolla and Cow dung liquid fertilizer had significant effects on growth and yield of Okra (*Abelmoschus esculentus L.*) over the control. The results revealed that different number of application of Azolla + Cow dung liquid organic fertilizer combined with inorganic fertilizer had significant differences (p<0.05) on plant height, number of leaves per plants, leaf area, root length, fresh weight of plant, fresh weight of leaves, dry weight of leaves, chlorophyll content, number of flowers, fresh weight of pods and dry weight of pods. T4 had the highest

mean plant height compared to other treatments and T1 had the lowest height compared to other treatments. Number of leaves was high in T4 whereas number of leaves was low in T1. Furthermore, significant different (p>0.05) in yield was obtained in T4 (30.85g/plant) and least value was observed in T1 (8.50g/plant). Among the all tested treatments, 2/3 Inorganic fertilizer and four times of liquid fertilizer application at top dressing (T4) could be used in okra cultivation to be obtain better yield. Usage of Azolla organic liquid fertilizer would be a better alternative fertilizer in vegetable cultivation.

Table of Contents

ABSTRACTi
ACKNOWLEDGEMENT iv
ABBREVIATIONxii
CHAPTER 01 1
1.0. INTRODUCTION
1.1Background of the study1
CHAPTER 02
2.0. LITERATURE REVIEW
2.1. Okra (<i>Abelmoschus esculentus L</i> .)
2.1.1 History and Origin of Okra
2.1.2Taxonomy7
2.1.3. Structure and Botany of crop
2.1.4.Climate,Soil and Growth requirement
2.1.5 Uses
2.1.6.Present status of Okra cultivation in the world
2.1.7.Present status of Okra sultivation in Sri Lanka
2.1.8.Nutritional composition of Okra 12
2.1.9. Recommended varieties of Okra in Sri Lanka
2.2. Fertilizers

	2.2.1.Inorganic Fertilizer	15
	2.2.2.Problems of the inorganic fertilizer	15
	2.2.3.Organic Fertilizer	16
	2.2.4.Benefits of the organic fertilizer	17
	2.3. Azolla	18
	2.3.1.Diversity of the Azolla	19
	2.3.2.Taxonomic classification	19
	2.3.3.Azolla as Fertilizer.	20
	2.3.3. Chemical composition of the Azolla	22
	2.3.4.Uses of the Azolla	22
	2.4. Cow Urine	23
	2.4.1.Chemical composition	24
	2.4.2.Uses of the Cow Urine	24
	2.5. Cow dung	25
	2.5.1.Composition of cow Dung	25
	2.5.1.Uses of cow dung	26
CHA	PTER 03	28
3.0	. MATERIAL AND METHODOLOGY	28
	3.1 Experiment location	28
	3.2 Climate and Soil	28
	3.3. Variety used	28
	3.4 Experiment	29

3.4.1.Experimental Design
3.4.2.Treatment used in this experiment
3.4.3.Preparation of liquid organic fertilizer
3.4.3.1. Collection of raw material
3.4.3.2. Preparation of liquid organic fertilizer
3.4.4.Treatment Application of liquid organic fertilizer
3.5. Determination of the nutrient content of the liquid fertilizer (Nitrogen,
Potassium and Phosphorous %)
3.6. Agronomic Practices
3.6.1.Preparation of pots
3.6.2.Seeding
3.7. Cultural Practice
3.7.1.Fertilizer Application
3.7.2.Irriggation
3.7.3.Weeding
3.7.4.Pest and Disease Management
3.8. Parameters
3.8.1.Germination Percentage
3.8.2.Growth Parameters
3.8.2.1. Plants height (cm)
3.8.2.2. Number of leaves per plant
3.8.2.3. Fresh weight of plant

3.8.2.4. Fresh weight and dry weight of leaves per plant
3.8.2.5. Leaves area (cm ²⁾
3.8.2.6. Root length (cm)
3.8.3.Quality parameters
3.8.3.1. Chlorophyll Content
3.8.4. Yield Paramters
3.8.4.1. Number of flowers per plan
3.8.4.2.Fresh weight of pod(g)
3.8.9.Analysis of Data
CHAPTER 04
4.0. RESULTS AND DISCUSSION
4.1.Properties of the Soil
4.2. Determination of nutrient content of the liquid fertilizer
4.3. Growth assessment
4.3.1.Plant height
4.3.2.Number of leaves
4.3.3.Leaf area
4.3.4.Fresh weight of the plant
4.3.5.Fresh and dry weight of the leaves
4.3.6.Root Length
4.4. Qualitative Parameters
4.4.1.Chlorophyll content

4.5. Yield Parameters	
4.5.1.Number of flowers per plant	
4.5.2.Fresh weight of pods	
CHAPTER 05	
5.0. CONCLUSION	
REFERENCES	

LIST OF TABLES

Table 2. 1: Nutritional Composition of Okra
Table 2. 2: Distribution of Azolla spp. In Asia 18
Table 2. 3: Chemical Composition of Azolla. 22
Table 2. 4: Chemical Composition of Cow urine. 24
Table 2. 5: Composition of Cow dung. 25
Table 3. 1: Treatments. 31
Table 3. 2: Component for preparation of liquid organic fertilizer 32
Table 3. 3: Department of Agriculture, Sri Lanka recommended fertilizer application
for the cultivation of Okra
Table 4. 1: Soil Characeristics of soil used in this study 38
Table 4. 2: Nutrient content of the liquid fertilizer(Azolla+Cow dung)
Table 4. 3: Plant height(cm) of okra at different weeks 40
Table 4. 4: Number of leavs per plant at different weeks 41
Table 4. 5: Leaf area(cm ²) at different weeks 42
Table 4. 6: Fresh weight(g) of okra 43
Table 4. 7: Fresh and dry leaves weight(g) of okra. 44
Table 4.8 : Root length(cm) of okra
Table 4. 9: Chylorophyll content of okra different week
Table 4.10 : Number of flowers per plant at two weeks interval
Table 4. 11: Fresh weight of pod 48

LIST OF FIGURES

Figure 2. 1:Geographical distribution of okra
Figure 2. 2: Production and cultivated extent of Okra in Sri Lanka (2014-2019) 11
Figure 2. 3: Socioeconomic and ecosystem services provided by Azolla when applied
to agriculture as a fertilizer
Figure 3. 1: Okra seeds variety
Figure 3. 2: Experiment arrangement design
Figure 3. 3: Arrangement of Okra plants in polyhouse
Figure 3. 4: Poly bag size
Figure 3. 5: Germination percentage