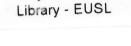
IMPACT OF LOCALLY AVAILABLE MULCHING MATERIALS ON MOISTURE EVAPORATION AND


RETENTION IN SOIL

BY

MOHAMED SIMRA FARVIN

FTC 130

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRI LANKA

2023

ABSTRACT

Mulching is a common practice used to conserve soil moisture in dry areas of Sri Lanka, because it reduces soil evaporation by breaking. Mulching is the practice of covering the soil or ground with a layer of material to improve growing conditions for plants, facilitate their development, and increase crop yield. Particularly in dry areas in Sri Lanka face higher soil evaporation loss which causes a decline in yield production. This present study aimed to investigate the effect of mulched materials on soil evaporation and water retention. Coir dust, banana leaf residue and Gliricidia leaves were used in two different ways as treatments. T1(control), T2 (surface coir dust mulch), T3 (incorporated coir dust mulch), T4 (surface banana leaf residue mulch), T5 (incorporated *Gliricidia* leaves mulch), and T7 (incorporated *Gliricidia* leaves mulch).

Evaporation loss and moisture retention experiments were analyzed at continuous 25 days in both laboratory and field conditions. Physico – chemical parameters such as bulk density, moisture content, porosity, pH, and EC were analyzed on the final day of the experiment. According to the evaporation and water retention analysis, T7 which involved incorporated mulched Gliricidia leaves performed the best in both laboratory and field conditions. This treatment significantly reduced soil water loss and increased water retention compared to the T1 control.

Analysis of physicochemical parameters such as bulk density, moisture content, porosity, pH, and EC shown that all the values were significantly varied with treatments. T7 and T4 had the best performance. T1 and T4 had the least performance. According to the moisture evaporation, water retention, and physicochemical analysis, it could be concluded that the T7 which involved incorporated Gliricidia leaves mulch

i

on the soil surface was performed best and it can be used as mulch material for mulching to eradicate the soil evaporation and improve the water retention thereby to promote their use amongst cultivators.

According to the moisture evaporation and water retention analysis, incorporated mulched with Gliricidia leaves performed best compared with surface mulched treatments.

TABLE OF CONTENTS

ABSTRACTi
ACKNOWLEDGMENTiii
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLESix
ABBREVIATIONSx
CHAPTER 01 1
1.0 INTRODUCTION
CHAPTER 02
2.0 LITERATURE REVIEW
2.1 Sri Lanka Dry Zone
2.2 Dry zone agriculture
2.3 Soil surface evaporation
2.4 Mulching
2.4.1 What is mulching
2.4.2 Types of Mulching7
2.4.3 Characteristics of different mulch materials
2.4.3.1 Straw
2.4.3.2 <i>Gliricidia</i> leaves
2.4.3.3. Coir dust
2.4.3.4 Sawdust

CHAPTER 03
3.0 MATERIALS AND METHODS
3.1 Experimental site
3.1.1 Soil Evaporation Estimation
3.1.2 Soil Moisture Retention Estimation:
3.2 Experimental Design
3.2.1 Experimental materials
3.2.2 Methodology
3.2.2.1 Material preparation
3.2.2.2 Poly bag preparation
3.2.2.3 PVC column preparation
3.2.3 Experimental Analysis
3.2.3.1 Estimation of Surface Soil Evaporation
3.2.3.2 Estimation of Soil Moisture Retention
3.2.3.3 Determination of soil moisture content
3.2.3.4 Determination of Bulk Density
3.2.3.5 Determination of organic content
3.2.3.6 Determination of pH
3.2.3.7 Determination of Electrical Conductivity
3.2.4 Statistical Analysis
CHAPTER 04
4.0 RESULTS AND DISCUSSION

4.1 Quality characteristics effect on mulched soil
4.1.1 Effect of mulch materials on soil evaporation in lab condition 33
4.1.2 Effect of soil evaporation on mulched soil in field condition35
4.1.3 Effect of soil water leaching on mulched soil in lab condition. 37
4.1.4 Effect of moisture content on mulched soil at lab condition 38
4.1.5 Effect of moisture content on mulched soil at field condition 39
4.1.6 Effect of bulk density on mulched soil in lab condition
4.1.7 Effect of bulk density on mulched soil in field condition
4.1 8 Effect of soil porosity on mulched soil in lab condition
4.1.9 Effect of soil porosity on mulched soil in field condition
4.1.10 Effect of pH on mulched soil in lab condition
4.1.11 Effect of pH value on mulched soil in field condition
4.1.12 Effect of Electrical Conductivity on mulched soil in lab
condition
4.1.13 Effect of EC value on mulched soil in field condition47
CHAPTER 05
5.0 CONCLUSION
REFERENCES
APPENDIXi

LIST OF FIGURES

Figure 2.1: Schematic representation of the soil surface evaporation in mulched soil 6
Figure 3.1: Experimental Design
Figure 3.2 : Types of mulch materials used for this study
Figure 3.3: Experimental setup
Figure 3.4: Weighing moisture can with soil
Figure 4.1: Changes in soil evaporation on mulched soil at lab condition
Figure 4.2: Changes in soil evaporation on mulched soil at field condition
Figure 4.3: Changes in soil water leaching on mulched soil at lab condition
Figure 4.4: Effect of moisture content on mulched soil at lab condition
Figure 4.5 : Effect of moisture content on mulched soil in field condition
Figure 4.6: Effect of bulk density on mulched soil in lab condition
Figure 4.7: Effect of bulk density on mulched soil in field condition
Figure 4.8: Effect of porosity on mulched soil at lab condition
Figure 4.9: Effect of porosity on mulched soil at field condition44
Figure 4.10: Effect of pH on mulched soil at lab condition45
Figure 4.11: Effect of pH on mulched soil in field condition46
Figure 4.12 : Effect of EC value on mulched soil at lab condition47
Figure 4.13: Effect of EC value on mulched soil at field condition

LIST OF TABLES

Table 3.1: Treatments of the experiment
Table 3.2: Poly bag preparation details
Table 3.3 : PVC column preparation details 22
Table 4.1: Analysis of soil evaporation rates of mulched samples at different treatments in lab
condition34
Table 4.2: Analysis of soil evaporation rates of mulched samples at different treatments in
field condition
lab condition
Table 4.3: Analysis of soil water leaching on mulched samples at different treatments in lab
condition
Table 4.4: Analysis of physicochemical properties of mulched soil samples at different
treatments in lab condition48
Table 4.5: Analysis of physico-chemical properties of mulched soil samples at different
treatment in field condition

2.4.3.5 Banana leaves
2.4.3.6 Plastic mulch
2.4.3.7 Polythene film 10
2.4.3.8 Newspaper
2.4.4 Criteria for Selection of mulch materials 10
2.4.5 Benefits of Mulching
2.4.5.1 Moisture conservation
2.4.5.2 Prevent evaporation loss
2.4.5.3 Nutrient conservation
2.4.5.4 Weed control 12
2.4.5.5 Minimizing soil compaction and Erosion 12
2.4.5.6 Regulation of soil temperature
2.4.5.7 Improve soil structure
2.4.6 Analysis of the Effects of Mulches on soil parameters
2.4.6.1 Soil moisture content
2.4.6.2 Soil pH
2.4.6.4 Soil temperature
2.4.6.5 Soil EC
2.4.6.6 Soil bulk density15
2.4.6.7 Soil porosity
2.4.6.8 Soil organic content
2.4.6.9 Mulch thickness 17