VALUE ADDITION OF PLASTIC WITH CLAY TO

MANUFACTURE PLASTIC-CLAY BRICKS

BY

DEVENT'HIRAN RANJANIDEVI

DEPARTMENT OF BIOSYSTEMS TECHNOLOGY

FACULTY OF TECHNOLOGY

EASTERN UNIVERSITY

SRILANKA

2023

ABSTRACT

Plastics play a significant role in modern society and they are utilized often in a variety of applications, which results in enormous waste generation. Plastic waste is a non-biodegradable waste that cannot decompose and pollutes air, water, and land. Large-scale plastic disposal has become a significant environmental burden because plastic cannot be degraded and recycling it poses significant challenges. This research project tries to solve the problem innovatively and efficiently by utilizing waste plastic to manufacture plastic clay bricks. In this study, the PET plastic waste value was added with clay to prepare plastic building bricks. The plastic was used as a binding material for the replacement of cement. The bricks were prepared by taking plastic clay in four different ratios of 1:1, 1:2, 1:3, and 1:4. In each of these ratios, only one part of the plastic was taken from the total amount of weight, and clay was taken in different amounts. Water absorption and compressive strength tests were performed to evaluate the quality of prepared plastic clay bricks. According to the test results, prepared plastic clay bricks showed satisfactory compressive strength with a negligible amount of water absorption rate compared to conventional bricks. The ratios 1:1 and 1:2 showed good compressive strengths of 12.05 N/mm² and 6.16 N/mm² as well as water absorption rates of 2.85% and 3.24 %, respectively. Ratios 1:1 and 1:2 were preferable for construction usage. Especially in underground construction due to its good compressive strength and minimum water absorption rate. Overall, these plastic clay bricks were a creative and effective solution for waste disposal problems. As well, these are alternative and affordable construction materials.

TABLE OF CONTENTS

ABSTRACTi
ACKNOWLEDGEMENTii
TABLE OF CONTENTSiii
LIST OF TABLES
LIST OF FIGURES
ABBREVIATIONvii
CHAPTER 01
INTRODUCTION1
1.1 Research Background1
1.2 Characteristics of PET
1.3 Applications of PET6
1.4 Objectives of the Research Project
CHAPTER 02
REVIEW OF LITERATURE7
2.1 Plastic wastes in the production of building bricks7
2.2 Plastic Waste in the Production of Pavement Bricks17
CHAPTER 03
MATERIALS AND METHODS
3.1 Experimental Materials
3.1.1 PET Plastic
3.1.2 Clay
3.2 Experimental Design
3.3 Methodology

LIST OF TABLES

Table 1.1 - Properties of PET Bottles	6
Table 3.1 - Ratios and Quantities of Plastic and Clay Required to Produce Plastic	
bricks2	22
Table 4.1 - Water Absorption Rate of the Plastic Clay Bricks 2	8
Table 4.2 - Compressive Strength Results of Plastic Clay Bricks	0

LIST OF FIGURES

Figure 1.1 - Chemical Structure of PET Monomer
Figure 3.1 - Water Absorption Testing Process
Figure 3.2 - Compressive Strength Testing Process
Figure 3.3 - Flow chart for preparation of plastic clay bricks
Figure 4.1 - Graphical Representation of Average Water Absorption Rate Variation
in Plastic Clay Ratios
Figure 4.2 - Graphical Representation of Average Compressive Strength Variation in
Plastic Clay Ratios