

Eastern University, Sri Lanka

Third Year Examination in Science 2020/2021 (Oct/Nov 2024)

Honours Degree in Chemistry

CH4012 Advanced Inorganic Chemistry-I

Answer all questions

Time: Two hours

1. a) i) Construct the group multiplication table for the point group S₄ by examining the effects of sequentially applying the various symmetry operations within the group.

S4	E	C ₂	S4 ¹	S4 ³	
E					
C ₂					
S4 ¹					
S4 ³					

[20 Marks]

b) Determine all symmetry elements and unique symmetry operations for each of the following molecules, and identify the point group for each molecule.

i) [NH₃Cl]⁺ ii) [BF₄]⁺ iii) PF₃ iv) Staggered ferrocene

[40 Marks]

c) Explain the concept of n-fold improper rotation using the molecule provided below.

[40 Marks]

Contd.

- 2. a) Diagrammatically show the locations of all possible symmetry elements in each of the following molecules.
 - i) all rotational axis of symmetry and the plane of symmetry for $[Co(en)_3]^{3+}$
 - ii) all rotational axis of symmetry and mirror planes for [ZrF8]4-
 - iii) all rotational axis of symmetry and plane of symmetry for B₂H₆

[30 Ma

b) Discuss the following,

- i) Abelian and non-abelian group
- ii) Metal to Ligand Charge Transfer (MLCT) involving an octahedral metal comple
- iii) Symbiotic theory for linkage isomers

(30 ma

c) i) Deduce the 3 x 3-matrix representation for the following symmetry operation.

- 3. a) i) Write down the reduction formulae for reducing the representation spanned by a set basis functions. Briefly explain each of the terms in the formulae.
 - ii) Define the term irreducible representations (IRs)

1.

iii) The following is the charter table for D_{3h} point group.

D _{3h}	E	2 C ₃	3 C ₂	$\sigma_{\rm h}$	2 S ₃	$3 \sigma_v$		
A'1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A'2	1	1	-1	1	1	-1	Rz	
E	2	-1	0	2	-1	0	(x,y)	(x ² - y ² , xy)
A"1	1	1	1	-1	-1	-1		
A"2	1	1	-1	-1	-1	1	Z	
E"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

I) Write down the meaning of all the symbols seen in column 1 (under D_{3h})

II) Decompose the given irreducible representation (Γ_{RR}) into irreducible representations by utilizing the appropriate formula

[40 Mar

b) Provide an explanation of the selection criteria for electronic spectral analysis of transition metal complexes.

(20 marks)

(40 marks)

- c) i) State Hund's rules to determine the ground state terms of a free metal ion.
 - ii) Draw Pigeon hole diagram for p² configuration and arrange the all state terms by using an energy level diagram.
- 4. a) i) Write a short account of Orgel diagrams.
 - ii) Sketch a single Orgel diagram that clearly shows and classifies the high spin coordination molecules in d¹, d⁴, d⁶, and d⁹ configurations.

(40 marks)

b) Discuss the expected electronic absorption spectra for the following compounds.
i) [Co(H₂O)₆]²⁺
ii) [CoCl₄]²⁻

(30 marks)

c) The following Orgel and Tanaba Sugana diagram of $[V(H_2O)_6]^{3+}$ is important to consider when answering the question below.

Derive an equation to express the calculation of Racha parameter *B* using the possible electronic transition for the above complex $[V(H_2O)_6]^{3+}$.

VALANALANA

(30 marks)