EASTERN UNIVERSITY, SRI LANKA

FOURTH YEAR SECOND SEMESTER EXAMINATION IN AGRICULTURE - 2008/2009

AEC 4105 – BASIC ECONOMETRICS

Answer ALL questions

Time: Two hour (02)

01)

- a) Define the following variables:
 - i) Dependent variable
 - ii) Independent variable

- i) Heteroscedasticity
- ii) Autocorrelation
- iii) Normality

02)

- a) list three different applicable examples where quantitative methods are applied in economics.
- b) A researcher has 100 observations of Y, X_1 , X_2 and X_3 . She uses MLR (Multiple Linear Regressions) to create a dependent factor of Y using X_1 , X_2 and X_3 as predictors. The regression equation is $Y = 22.0 2.04 X_1 + 0.3 X_2 + 0.78 X_3$. The researcher now notices that the first number in X_3 should have been 16 instead of 6, so he changes only that number and re-fits the model. Now the regression equation is $Y = 22 2.04 X_1 + 3.09 X_2 0.008 X_3$. The researcher assumed MLR assumption violation behind this data set by looking at the two results.

Answer the following:

- i) What may be the cause/violation of this data set?
- ii) Comment on the properties of the estimators of the above models?
- iii) Give one reason for the above violation in regression models?
- iv) How this researcher will handle/overcome the above situation?

- 03) Using the SPSS output tables for a defined analysis given below, answer the following:
 - Name the analysis done to generate this output,
 - Interpret the results obtained. b)

ANOVA (b)

Model	311	Sum of Squares	df	Mean Square	E	C.
1	Regression	191747559		19174755959	1	Sig.
ad to a	Residual Total	599.768 623253814 359.232 815001373 959.001	1 157 158	9.768 3969769518.2 12	48.302	0.000(a)

b Dependent Variable: farm income

Coefficients (a)

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
1	(Constant)	В	Std. Error	Beta		0.6.
	(Constant) AGLAND	3870.379 4831.818	9976.521 695.230	40.5	0.388	0.699
Depende	ent Variable: far	m income	073.230	.485	6.950	.00

04)

a) The output table for a multiple regression analysis is given below. Answer the following questions based on the results.

Independent variables	Coefficients	Standard	t-value	Sig.
Education of household head	0.022*			
Age of household head		0.011	1.992	0.049
Young is to adult ratio	-0.003	0.004	-0.638	0.525
Discost is to adult ratio	-0.063	0.047	-1.337	0.184
Diversity index	0.013	0.022		-
Sex of household	0.241*		0.608	0.545
Constant		0.079	3.069	0.003
umber of observations: 07. F	3.515*	0.262	13.42	0.000

Number of observations: 97, R-Square: .344 (Prob>F), Adjusted R-Square: .300

Regression mean square > residual mean square (.838 > .107)

Dependent variable: Household income

*Significant at 5% level (P< 0.05)

(Note: Coding given for sex of household head during data entry female: 0, male: 1)

I. Interpret the R² value of this output.

II. Write down the estimated equation for the above output.

III. Interpret the relationship between the dependent and predictors of this output.