

EASTERN UNIVERSITY, SRI LANKA

FIRST YEAR EXAMINATION IN SCIENCE

SECOND SEMESTER 2010-2011 (June/July 2013)

CH 103 STEREOCHEMISTRY AND KINETIC MOLECULAR THEORY
(Proper and Repeat)

Answer all questions

Time allowed: ONE Hour

You may find the following data useful

Avogadro constant (N_A): 6.023 x 10^{23} mol⁻¹

Electron charge (e): 1.602 x, 10⁻¹⁹ C

Faraday constant (F): $9.648 \stackrel{?}{x} 10^4 \text{ Cmol}^{-1}$

Gas constant (R): 8.314 JK⁻¹mol⁻¹

Planck's constant (h): 6.626 x 10⁻³⁴ Js

Rest mass of electron (m_e): 9.1 x 10⁻³¹ kg

Velocity of light (c): 3 x 10⁸ ms⁻¹

The use of a (non -programmable) calculator is permitted

- 1. a) i) Draw the Fischer projection formulas for the following stereoisomers and point out their R, S specifications, optical activity (where present), and meso compounds.
 - 1. 1, 2, 3, 4-tetrahydroxybutane
 - 2. 1-chloro-2, 3-dibromobutane

(30 marks)

ii) Identify whether the following pairs are enantiomers, diastereomers, conformers or the identical.

(20 marks)

b) Explain the reaction when the optical active molecule A is treated with NaOH.

(20 marks)

Contd...

- c) The optical rotation of 1g/ml of compound in a 10 cm tube 1940. Determine the observed rotation of the sample PN UNIVERS
 - (i) when a 6 cm sample tube is used.
 - (ii) when the concentration of the solution is diluted to one fourth of its original solution(sample tube is still 10 cm).

(30 marks)

a) The E₂ elimination reactions of different configuration of 2,6-dimethylbromocyclohexane with potassium tert-butoxide(K⁺O-t-Bu) is given below. Explain how these reactions are possible

(40 marks)

- b) Considering a certain mass of a gas enclosed in a cubic box of length 1 at a fixed temperature. Derive expressions for,
 - i. The total change of momentum per second on one face of the box due to one molecule only.
 - ii. The total change of momentum due to impacts of all the molecules on all faces of the box.
 - iii. Show that

$$PV = \frac{1}{3} \text{ mNC}^2$$

Where.

V- volume of the cube, P- pressure of the gas, m- mass of one molecule N- total number of gas molecules, C- velocity of a molecule.

iv. Calculate the root mean square velocity of an He molecule at 30 °C and 76 cm Hg pressure (1 atm = 10^5 Nm^{-1} ; He = 4).

(60 marks)