

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE 2005/2006

$\frac{\text{August/September' 2007}}{\text{FIRST SEMESTER}}$

MT 101 - FOUNDATION OF MATHEMATICS

swer all questions

Time:Three hours

- (a) Define the terms tautology and contradiction as applied to a logical proposition. Let p and q be two propositions. Determine whether each of the following is a tautology, a contradiction or neither.
 - i. $(p \rightarrow q) \land (\neg p \lor q)$.
 - ii. $(p \rightarrow q) \rightarrow (p \land q)$.
 - iii. $(p \leftrightarrow q) \leftrightarrow [\neg (p \land \neg q) \land \neg (q \land \neg p)].$
- (b) Test the validity of the following argument:

 "If you are a mathematician then you are clever. You are clever and rich. Therefore if you are rich then you are a mathematician."

2. Define the following:

- The difference, $A \setminus B$ of two sets A and B.
- Symmetric difference, $A \triangle B$ of two sets A and B.
- Power set, P(A) of a set A.
- (a) Let A, B and C be three subsets of a universal set X.
 - (1) Prove that $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.
 - (2) Prove that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$.

- $(3) (A \triangle B) \cap (A \cap B) = \phi.$
- (4) Construct a suitable example to show that $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$.
- Q3. (a) What is meant by an equivalence relation on a set?

 Let A be any set and let R be an equivalence relation on A. Prove the following:
 - (i) $[a] \neq \phi \quad \forall a \in A$.
 - (ii) $aRb \iff [a] = [b].$
 - (iii) $b \in [b] \iff [a] = [b].$
 - (iv) For any $a, b \in A$ either [a] = [b] or $[a] \cap [b] = \phi$. (Here [x] denotes the equivalence class of x.)
 - (b) Define a relation R on $\mathbb{N} \times \mathbb{N}$ by (a, b)R(c, d) if and only if a + b = c + d.
 - (a) Prove that R is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.
 - (b) Let S denote the set of equivalence classes of R. Show that there is a one-to-one and onto function from S to \mathbb{N} .
- Q4. Define the terms 'Injective' and 'Surjective' as applied to a mapping.
 - (a) Let $f_1: A \to B$ and $f_2: B \to A$ be mappings such that $f_2 \circ f_1 = I_A$ and $f_1 \circ f_2 = I_B$, where I_A and I_B are the identity mappings defined on A and B respectively. Prove that f_1 is bijective and $f_2 = f_1^{-1}$.
 - (b) Let $f: S \to T$ be a mapping. Prove that f is injective if and only if $f(A) \cap f(S \setminus A) = \phi$, $\forall A \subseteq S$.
 - (c) Give an example of a function f from \mathbb{N} to \mathbb{N} such that:
 - (1) f is injective but not surjective;
 - (2) f is surjective but not injective.
- Q5. (a) Define the following terms:
 - (i) Partially ordered set;
 - (ii) Totally ordered set.
 - (b) Let R be a relation defined on \mathbb{N} by xRy if and only if x divides y.
 - (i) Show that R is a partial order relation on \mathbb{N} .
 - (ii) Find the infiniraum and supremum (if exists) for a subset $A = \{2, 4, 8, 12, 0\}$ of \mathbb{N} .

- (c) (i) What is meant by a countable set?
 - (ii) Prove that $\mathbb{N} \times \mathbb{N}$ is countable.
- (a) Define the term, greatest common divisor (gcd) of two integers.

 Let gcd(a,b) = d, where a,b are two integers not both zero. Prove that $gcd(\frac{a}{d},\frac{b}{d}) = 1$.
 - (b) With the usual notations, prove that the linear Diophantine equation ax+by=c has a solution if and only if $\gcd(a,b)$ divides c.

 Further show that, if $\gcd(a,b)$ divides c then it has infinitely many solutions of the form $x=\frac{b}{\gcd(a,b)}k+x_0$ and $y=-\frac{a}{\gcd(a,b)}k+y_0$, where x_0,y_0 is a particular solution and $k\in\mathbb{Z}$.
 - (c) Solve the congruence $2x + 11 = 7 \pmod{3}$