

5

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2008/2009

FIRST SEMESTER (Mar./May, 2010)

MT 101 - FOUNDATION OF MATHEMATICS

Answer all questions

Time: Three hours

1. (a) Prove the following equivalences using the laws of algebra of proposition:

i.
$$(\sim p \land q) \lor (p \lor \sim q) \equiv t$$
,

ii.
$$[p \lor (q \land r)] \lor \sim [(\sim q \land \sim r) \lor r] \equiv p \lor q,$$

where t denotes a proposition which is always true.

(b) Using valid argument forms, draw a valid conclusion to the premises given below. Give reasons at each step.

$$\sim p \to q \wedge \sim r$$

$$s \rightarrow r$$

$$u \rightarrow \sim p$$

$$\sim w$$

$$u \vee w$$

- 2. (a) For any sets A and B, prove that $A \triangle B = (A \cup B) \setminus (A \cap B)$. Hence show that:
 - i. $A \triangle B$ and $A \cap B$ are disjoint,

ii.
$$A \cup B = (A \triangle B) \cup (A \cap B)$$
.

(b) For any sets A, B and C, prove that:

i.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
,

ii.
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$
.

3. (a) Let R be a relation defined on $\mathbb{C} \setminus \{0\}$ by $z_1Rz_2 \Leftrightarrow z_1\bar{z}_1(z_2+\bar{z}_2)=z_2\bar{z}_2(z_1+\bar{z}_1)$, where \mathbb{C} denotes the set of all complex numbers. Prove that R is an equivalence

relation.

If a is a non-zero real number, show that R-class of a is a circle with centre at $\left(\frac{1}{2}a,0\right)$ and radius $\frac{1}{2}a$.

- (b) Let R be an equivalent relation on a set A. Prove the following:
 - i. $[a] \neq \Phi \ \forall a \in A$,

6

- ii. $aRb \Leftrightarrow [a] = [b],$
- iii. either [a] = [b] or $[a] \cap [b] = \Phi \quad \forall a \in A$.
- 4. (a) Define the following terms:
 - i. injective mapping,
 - ii. surjective mapping,
 - iii. inverse mapping.
 - (b) The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are defined by

$$f(x) = \begin{cases} 1 - x, & \text{if } x \ge 0; \\ x^2, & \text{if } x < 0; \end{cases} \text{ and } g(x) = \begin{cases} x, & \text{if } x \ge 0; \\ x - 1, & \text{if } x < 0. \end{cases}$$

Find the formula for $f \circ g$.

Show that $f \circ g$ is a bijection and give a formula for $(f \circ g)^{-1}$

- 5. (a) Let $f: X \to Y$ be a mapping. Prove that f is injective if and only if $f(A) \cap f(X \setminus A) = \Phi \ \forall A \subseteq X$.
 - (b) i. Prove that every partially ordered set has at most one first element.
 - ii. Show that first element of every partially ordered set is a minimal element.

 Is the converse true? Justify your answer.
- 6. (a) State division algorithm. For $n \ge 1$, prove that n(n+1)(2n+1)/6 is an integer.
 - (b) i. Using the Euclidean algorithm find integers x and y satisfying

$$\gcd(119, 272) = 119x + 272y.$$

ii. Determine all positive integer solutions of the Diophantine equation

$$18x + 5y = 48.$$