

### EASTERN UNIVERSITY, SRI LANKA

# IRST EXAMINATION IN SCIENCE (2005/2006 & 2006/2007)

## FIRST SEMESTER (Aug./Sep.'2007)

#### MT 106 - TENSOR CALCULUS

#### Answer all questions

Time: One hour

- 1. (a) Write the law of transformation for the tensors
  - i. Aik,
  - ii.  $B_{ijk}^{mn}$ ,
  - iii. Cm.
  - (b) Define the terms symmetric and skew-symmetric tensors.
    - i.  $\Phi = a_{jk}A^jA^k$  show that we can always write  $\Phi = b_{jk}A^jA^k$  where  $b_{jk}$  is symmetric.
    - ii. Show that the contraction of the outer product of the tensors  $A^p$  and  $B_q$  is an invariant.
  - (c) Find the covariant and contravariant components of a tensor in cylindrical coordinates  $(\rho, \phi, z)$ , if its covariant components in rectangular coordinates are 2x z,  $x^2y$ , yz.

- (a) Define the following:
  - i. Christoffel symbols of first and second kind;
  - ii. Geodesics;
  - iii. Covariant derivative of  $B^i_{jk}$  and  $B_{pq}$ .
  - (b) With the usual notations, prove the followings:

i. 
$$[pq, r] = [qp, r],$$

ii. 
$$[pq,r]=g_{r,r}\Gamma_{pq}^{s}$$
,

iii. 
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn}\Gamma^q_{mn} - g^{qn}\Gamma^p_{mn}.$$

(c) Determine the christoffel symbols of second kind in sperical coordinate  $(r, \theta, \phi)$  and find the corresponding geodesic equations.

 $\Phi = \alpha_{j,k}A^jA^k$  show that we can always write  $\Phi = b_{j,k}A^jA^k$  where  $b_{j,k}$ 

contrangulation components of a tensor in cylin-

2), if its covariant components in rectangula

Define the terms symmetric and skew-ay