

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE - 2008/2009

FIRST SEMESTER (Mar./May, 2010)

MT106 - TENSOR ANALYSIS

(PROPER)

Answer all questions

Time: One hour

1. (a) The components of a contravariant tensor in the x coordinate system are

$$A^{11} = 4$$
, $A^{12} = A^{21} = 0$ and $A^{22} = 7$.

Find its components in the \overline{x} coordinate system, where

$$\overline{x}^1 = 4(x^1)^2 - 7(x^2)^2, \quad \overline{x}^2 = 4x^1 - 5x^2.$$

- (b) Let $ds^2 = g_{jk}dx^jdx^k$ is an invariant. Show that g_{jk} is a symmetric covariant tensor of rank two.
- (c) Prove that $A_{pq} x^p x^q = 0$ if A_{pq} is a skew-symmetric tensor.
- (d) Express the relationship between the following associated tensors:
 - i. A^{ijk} and A_{pqr}
 - ii. $A_{j,l}^{k}$ and A^{qkr}
 - iii. $A_{...n}^{q m.tk}$ and $A_{.r..p}^{q.st}$

- 2. (a) Define the Christoffel's symbols of the first and second kind.
 - (b) Determine the Christoffel's symbols of the second kind for the metric

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2.$$

(c) With the usual notations, prove the following:

i.
$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p],$$

ii.
$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn}\Gamma^q_{mn} - g^{qn}\Gamma^p_{mn}.$$

(d) Prove that the covariant derivatives of g_{jk} , g^{jk} and δ_k^j are zero.