

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2016/2017

FIRST SEMESTER (August/ September, 2018)

MT 1012 - FOUNDATION OF MATHEMATICS

Answer all questions

Time: Two hours

- 1. (a) Using truth tables, show that $p \to q \equiv \sim p \lor q$.

 Hence, rewrite the compound statement $(\sim p \lor q) \longrightarrow (r \lor \sim q)$ using only the connectives \land and \sim , where p,q and r are statements. [25 Marks]
 - (b) Prove the following equivalences using the laws of logic:

i.
$$p \wedge (p \vee q) \equiv p$$
;

ii.
$$\sim (q \vee p) \vee (\sim p \wedge q) \equiv \sim p$$
,

where p and q are statements.

[30 Marks]

(c) Using the valid argument forms, deduce the conclusion f from the premises given below:

$$l \rightarrow \sim k$$

$$e \rightarrow k$$

l

$$e \vee f$$

$$o \rightarrow g$$

- 2. (a) Let A, B and C be subsets of a set X. Simplify the expression: $[(A \cup \Phi) \cap (A' \cup B) \cap (A \cup B \cup X)]'.$
 - (b) For any sets A and B, prove that $A \triangle B = (A \cup B) \setminus (A \cap B)$. Hence show that:
 - i. $A \triangle B$ and $A \cap B$ are disjoint,
 - ii. $A \cup B = (A \triangle B) \cup (A \cap B)$.
 - (c) For any set A, B and C, prove that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
 - 3. (a) Let R be a relation defined on $\mathbb{C} \setminus \{0\}$ by $z_1Rz_2 \iff |z_1|(|z_2|^2+1) = |z_2||$ Prove that R is an equivalence relation. If r is a real number such that 0 < r < 1, then show that the equivalence

If r is a real number such that 0 < r < 1, then show that the equivalence consists of two concentric circles with center at (0,0) and radius r and 1/n

[2

- (b) Let λ and μ be equivalence relations on a set A. Prove that $\lambda \cap \mu$ is an equivalence relation.

 Is $\lambda \cup \mu$ an equivalence relation? Justify your answer.
- (c) Prove that every partially ordered set has at most one last element.
- 4. (a) Define the following terms:
 - i. injective mapping, ii. surjective mapping, iii. inverse map
 - (b) Let a function $f: [-1, \infty) \to [-1, \infty)$ be defined by $f(x) = x^2 + 2x$. Show bijective, and find f^{-1} .
 - (c) Let $f: X \to Y$ be a mapping and A and B be any subsets of X. Prove f is injective if and only if $f(A \cap B) = f(A) \cap f(B)$.