23 AUG 2013

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE -2010/2011

FIRST SEMESTER (APRIL, 2013)

PM 201 - VECTOR SPACES AND MATRICES
(PROPER & REPEAT)

Answer all Questions

Time: Three hours

1. (a) Define what is meant by

i. a vector space,

ii. a subspace of a vector space.

I II bled edd sevo V soege 101 [10 marks]

(b) Let $M_{m\times n}$ be the set of all real $m\times n$ matrices. For any two matrices $A=(a_{ij}),\ B=(b_{ij})\in M_{m\times n}$, and for any $\lambda\in\mathbb{R}$, define an addition \oplus and scalar multiplication \odot as follows:

$$(a_{ij}) \oplus (b_{ij}) = (a_{ij} + b_{ij}),$$

 $\lambda \odot (a_{ij}) = (\lambda a_{ij}).$

Prove that $(M_{m\times n}, \oplus, \odot)$ is a vector space over the field \mathbb{R} .

[**50** marks]

- (c) Let V be a vector space over a field \mathbb{F} and W be a non-empty subset of V. Prove that W is a subspace of V, if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in \mathbb{F}$.
- (d) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices over the field \mathbb{R} , and let $W = \left\{ \begin{pmatrix} x & y \\ z & 0 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$. Is W a subspace of $M_{2\times 2}$? Justify your answer.

[20 marks]

2. (a) Define the following:

- i. a linearly independent set of vectors;
- ii. a basis for a vector space;
- iii. direct sum of two subspaces S and W of a vector space V. [15 marks]
- (b) i. Let S and W be two subspaces of a vector space V over the field \mathbb{F} . Prove that V is a direct sum of S and W if and only if each vector $v \in V$ has a unique representation v = s + w, for some $s \in S$ and $w \in W$.
 - ii. Let U and W be two subspaces of \mathbb{R}^3 defined by $U=\{(a,b,c)|\ a=b=c,\ \text{and}\ a,b,c\in\mathbb{R}\}\ \text{and}\ W=\{(0,p,q)|\ p,q\in\mathbb{R}\}.$ Show that $\mathbb{R}^3=U\oplus W.$ [35 marks]
- (c) Let S be any non-empty linearly independent subset of an n-dimensional vector space V over the field \mathbb{F} . Prove that
 - i. for any $v \in V$ the set $S \cup \{v\}$ is linearly independent if and only if $v \notin \langle S \rangle$.
 - ii. any linearly independent set of vectors of V can be extended to a basis of V.

Hence extend the subset $\{(1,2,1),(3,-4,7)\}$ to a basis for \mathbb{R}^3 .

[50 marks]

- 3. (a) Define the following terms:
 - i. Range space R(T);
 - ii. Null space N(T);
 of a linear transformation T from a vector space V into another vector space W.

 [10 marks]

Prove that the image of any linearly independent subset of V is a linearly independent subset of W if and only if $N(T) = \{0\}$. [20 marks]

(b) Find R(T) and N(T) of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by T(x,y,z) = (x+2y+3z,x-y+z,x+5y+5z), for any $(x,y,z) \in \mathbb{R}^3$.

Verify the equation, $\dim V = \dim(R(T)) + \dim(N(T))$, for this linear result transformation. [30 marks]

- (c) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y,z) = (2x+y+3z,3x-y+z,-4x+3y+z), for any $(x,y,z) \in \mathbb{R}^3$. Let $B_1 = \{(1,1,0),(0,1,1),(1,0,1)\}$ and $B_2 = \{(1,1,1),(1,2,3),(2,-1,1)\}$ be bases for \mathbb{R}^3 . Find
 - i. the matrix representation of T with respect to the basis B_1 ;
 - ii. the matrix representation of T with respect to the basis B_2 by using the transition matrix. [40 marks]
- 4. (a) Define the following terms as applied to a matrix:
 - i. Rank;
 - ii. Echelon form;
 - iii. Row reduced echelon form.

[15 marks]

- (b) Let A be a $n \times n$ non-singular matrix. Prove that
 - i. A is row equivalent to I;
 - ii. A can be written as a product of elementary matrices;
 - iii. r(BA) = r(B), for every $n \times n$ matrix B.

[40 marks]

(c) Let r be the rank of the matrix A given by

$$A = \left(\begin{array}{cccc} 1 & \alpha & 0 & 0 \\ -\beta & 1 & \beta & 0 \\ 0 & -\gamma & 1 & \gamma \\ 0 & -\delta & 1 & \delta \end{array} \right).$$

Prove that

- i. r=2 if and only if $\alpha\beta=-1$ and $\gamma=\delta=0$;
- ii. r=3 if and only if either $\alpha\beta=-1$ or $\gamma=\delta$, here γ and δ are not both zero. [45 marks]

- 5. (a) Define the following terms as applied to an $n \times n$ matrix $A = (a_{ij})$.
 - i. Cofactor A_{ij} of an element a_{ij} ;

ii. Adjoint of A.

[10 marks]

Prove that

$$A \cdot (\text{adj } A) = (\text{adj } A) \cdot A = (\text{det } A) \cdot I,$$

where I is the $n \times n$ identity matrix.

[40 marks]

- (b) Let J be the $n \times n$ real matrix with every entry equals to one, so that $J^2 = nJ$, and let $A = \alpha I_n + \beta J$, where $\alpha, \beta \in \mathbb{R}$.
 - i. Show that $\det A = \alpha^{n-1}(\alpha + n\beta)$.
 - ii. If $\alpha \neq 0$ and $\alpha \neq -n\beta$, prove that A is non-singular by finding an inverse for it of the form $\frac{1}{\alpha}(I_n + \rho J)$, where I_n is the identity matrix of order n and ρ any real number.

Hence find the inverse of the matrix

$$\begin{pmatrix} 6 & 4 & 4 & 4 \\ 4 & 6 & 4 & 4 \\ 4 & 4 & 6 & 4 \\ 4 & 4 & 4 & 6 \end{pmatrix}.$$

[50 marks]

- 6. (a) State the necessary and sufficient condition for a linear system of equations to be consistent. [10 marks]
 - (b) Show that the linear system of equations,

$$x_1 - 3x_2 + x_3 + cx_4 = b,$$

$$x_1 - 2x_2 + (c - 1)x_3 - x_4 = 2,$$

$$2x_1 - 5x_2 + (2 - c)x_3 + (c - 1)x_4 = 3b + 4,$$

is consistent, for all values of b if $c \neq 1$, where $a, b \in \mathbb{R}$. Find the value of b for which the system is consistent if c = 1, and the general solution when b has this value and c = 1.

(c) State Crammer's rule for 3 × 3 matrix and use it to solve the following linear system of equations:

$$2x_1 - 5x_2 + 2x_3 = 7;$$

$$x_1 + 2x_2 - 4x_3 = 3;$$

$$3x_1 - 4x_2 - 6x_3 = 5.$$

[40 marks]