

EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2016/2017

SECOND SEMESTER (May/June, 2019)

MT 1042 - VECTOR ANALYSIS

Answer all questions

Time: Two hours

- 1. (a) Find the equation of the plane passing through three given terminal points of \underline{a} , \underline{b} and \underline{c} .
 - (b) Prove that the diagonals of a parallelogram bisect each other.
 - (c) Find \underline{x} in terms of \underline{a} and \underline{b} if $\underline{x} \wedge \underline{a} = \underline{b} \underline{x}$.
 - (d) Prove that the radius of curvature (ρ) of the curve with parametric equations $x = x(s), \ y = y(s)$ and z = z(s) is

$$\rho = \left[\left(\frac{d^2x}{ds^2} \right)^2 + \left(\frac{d^2y}{ds^2} \right)^2 + \left(\frac{d^2z}{ds^2} \right)^2 \right]^{1/2},$$

where s is an arc length of the curve.

- 2. (a) Define the following terms:
 - (i) the gradient of a scalar field ϕ ;
 - (ii) the curl of a vector field $\underline{\mathbf{A}}$.
 - (b) Prove that if ϕ is a scalar field and \underline{A} is a vector field, then

$$\operatorname{curl}(\phi \mathbf{A}) = \phi \operatorname{curl} \mathbf{A} + \operatorname{grad} \phi \wedge \underline{\mathbf{A}}.$$

(c) Let \underline{a} be a non-zero constant vector and \underline{r} be a position vector of a point. If $r = |\underline{r}|$, find grad $\left(\frac{\underline{a} \cdot \underline{r}}{r^5}\right)$.

Hence show that

$$\operatorname{curl}\left[\left(\frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{r}}}{\mathbf{r}^5}\right) \underline{\mathbf{r}}\right] = \frac{\underline{\mathbf{a}} \wedge \underline{\mathbf{r}}}{\mathbf{r}^5}.$$

- (d) Find the unit normal vector to the surface $x^4 3xyz + z^2 + 1 = 0$ at the point (1, 1, 1).
- 3. (a) Define the following terms:
 - (i) conservative vector field;
 - (ii) solenoidal vector field.
 - (b) Let $\underline{A} = (y^2 \cos x + z^3)\underline{i} + (2y \sin x 4)\underline{j} + (3xz^2 + 2)\underline{k}$.
 - i. Show that \underline{A} is a conservative vector field but not solenoidal.
 - ii. Find the scalar potential ϕ such that $\underline{A} = \underline{\nabla} \phi$.
 - (c) Find the directional derivative of $\phi = xy + yz + zx$ in the direction of the vector $2\underline{i} + 3\underline{j} + 6\underline{k}$ at the point (3, 1, 2).
- 4. (a) If $\underline{A} = (2y+3)\underline{i} + xz\underline{j} + (yz-x)\underline{k}$, then evaluate the integral $\int_{G} \underline{A} \cdot d\underline{r}$, where C is the straight line path from (0,0,0) to (0,0,1) then to (0,1,1) and then to (2,1,1).
 - (b) State the Divergenge theorem and use it to evaluate $\int \int \int_{V} \underline{\nabla} \cdot \underline{\hat{A}} \ dV$, where $\underline{A} = z\underline{i} + x\underline{j} 2y^2z\underline{k}$ and V is the volume of the cylinder $x^2 + y^2 = 16$ include in the first octant between the planes z = 0 and z = 5.