

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE - 2015/2016

FIRST SEMESTER (July/ August, 2017)

PM 101 - FOUNDATION OF MATHEMATICS

Answer all questions

Time: Three hours

1. (a) Let p and q be two statements such that $\sim p \to q$ is false. Find the truth value of the following statements:

i.
$$(p \lor \sim q) \rightarrow \sim p);$$

ii.
$$\sim q \wedge (p \vee q)$$
.

(b) Prove the following equivalences using the laws of logic:

i.
$$(\sim p \lor q) \land (p \land \sim q) \equiv F;$$

ii.
$$[p \lor (q \land r)] \lor \sim [(\sim q \land \sim r) \lor r] \equiv p \lor q,$$

where p, q and r are statements.

(c) Using the valid argument forms, draw a valid conclusion to the premises given below:

$$\sim p \lor q \longrightarrow r$$

$$\sim q \vee s$$

$$\sim 1$$

$$p \rightarrow t$$

$$\sim p \wedge r \to \sim s,$$

- 2. (a) Let A, B, C be subsets of a set X. Prove the following:
 - i. $A\Delta B = (A \cup B) \setminus (A \cap B);$
 - ii. $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C);$
 - iii. $(A \cap B') \cup (A' \cap B) = A \cup B$ if and only if $A \cap B = \phi$.
 - (b) For any set A, B and C, prove that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
- 3. (a) Let ρ be a relation defined on $\mathbb{C} \setminus \{0\}$ by $z_1 \rho z_2 \iff |z_1|(|z_2|^2 + 1) = |z_2|(|z_1|^2 + 1)$. Prove that ρ is an equivalence relation . If $a \in \mathbb{R}$ is such that 0 < a < 1, sketch equivalence class of a, [a], on the Argand diagram.
 - (b) Let R be an equivalence relation on a set A. Prove the following:
 - i. $[a] \neq \Phi$ for all $a \in A$,
 - ii. $aRb \iff [a] = [b],$
 - iii. either [a] = [b] or $[a] \cap [b] = \Phi$ for all $a \in A$.
- 4. (a) Define the following terms:
 - i. injective mapping, ii. surjective mapping, iii. inverse mapping.
 - (b) i. Let a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by f(x) = x|x|. Show that f is a bijective function and determine f^{-1} .
 - ii. Is the function $g: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $g(x) = x^2|x|$ a bijection? Justify your answer.
- 5. (a) Let $f: X \to Y$ be a mapping and A and B be any subsets of X. Prove the following:
 - i. f is injective if and only if $f(A \cap B) = f(A) \cap f(B)$;
 - ii. f is surjective if and only if $Y \setminus f(A) \subseteq f(X \setminus A)$.
 - (b) If A and B are two countable sets then prove that $A \cup B$ is countable.
- 6. (a) State division algorithm.

For any integer a , Prove that:

- i. $3 \mid a(a+1)(a+2);$
- ii. $3 \mid a(2a^2 + 7);$
- iii. if a is odd then $8 \mid (a^2 1)$.

- (b) Using the Euclidean algorithm find the gcd(1819, 3587) and hence express it as a linear combination of 1819 and 3587.
- (c) A grocer orders apples and bananas at a total cost Rs 840. If the apples cost Rs 25 each and the bananas Rs 5 each, how many of each type of fruit did he order?