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Answer all question. Time: Two hours

1. (a) Define the convergence and divergence of an infinite series Z Gl
-, * ™1 [10 marks]
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(b) Determine the convergence of the series Z an if a, does not tend to zero as n

£
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goes to infinity. [30 marks]
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(c) Show that the series Z(kla,,ﬁ-kzbn) is convergent, where i an and Z b, are
n=1 . nEl n=1
two convergent series of non-negative real numbers and &, ko are two positive
rd

real numbers. [30 marks]

(d) State the comparison test for convergence and divergence of an infinite series
and use it to check the convergence of the series,
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Z 5 - [30 marks]
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2. (a) Define the absolute convergence and conditional convergence of an infinite series
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Z On ' [10 marks]
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(b) Discuss the nature of convergence of the series,
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[Question 2. continued...]

State the D’Alembert’s ratio test and use it to test the convergence of the series,
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3"+ 2
n=1
Discuss the convergence of the series,
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by using the n'*-root test. [30 marks]

Let the function f(z) be positive, decreasing, and continuous on [1,00). Show

that the sequence,
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is increasing and bounded above, where I, = / Fla)de and 8, = Z f(k).
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State the integral test and use it to determine the convergence, of the series,
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By using the alternating series test, comment on the convergence of the series,
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Define a power series in x about point ¢ with coefficients a,,s.
[10 marks]

Find the interval of convergence and radius of convergence of the power series,
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Show that the function f(z), which has derivatives of all order, can be expressed

in a Taylor series,
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where f(™(z) is the n™-derivatives of f(z). [30 marks]

Expand the function, In[z(z + 1)], in a Taylor series about z = z; up to order

3. [30 marks]



