

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE - 2015/2016 SECOND SEMESTER (MAY/JUNE, 2018) PM 107 - THEORY OF SERIES

Answer all question.

Time: Two hours

- 1. (a) Define the *convergence* and *divergence* of an infinite series $\sum_{n=1}^{\infty} a_n$. [10 marks]
 - (b) Determine the convergence of the series $\sum_{n=1}^{\infty} a_n$ if a_n does not tend to zero as n goes to infinity.

 [30 marks]
 - (c) Show that the series $\sum_{n=1}^{\infty} (k_1 a_n + k_2 b_n)$ is convergent, where $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are two convergent series of non-negative real numbers and k_1 , k_2 are two positive real numbers.
 - (d) State the *comparison test* for convergence and divergence of an infinite series and use it to check the convergence of the series,

$$\sum_{n=1}^{\infty} \frac{2^{(\frac{-1}{n})}}{n^3}.$$
 [30 marks]

- 2. (a) Define the absolute convergence and conditional convergence of an infinite series $\sum_{n=1}^{\infty} a_n.$ [10 marks]
 - (b) Discuss the nature of convergence of the series,

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln(n)}{n}.$$
 [30 marks]

ID TO O 1

[Question 2. continued...]

(c) State the D'Alembert's ratio test and use it to test the convergence of the series,

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{3^n + 2}.$$
 [30 marks]

(d) Discuss the convergence of the series,

$$\sum_{n=1}^{\infty} \frac{(-1)^n (n^n)}{3^{(n^3+1)}},$$

by using the n^{th} -root test.

[30 marks]

3. (a) Let the function f(x) be positive, decreasing, and continuous on $[1, \infty)$. Show that the sequence,

$$(I_n - S_n),$$

is increasing and bounded above, where $I_n = \int_1^n f(x)dx$ and $S_n = \sum_{k=1}^n f(k)$.

[30 marks

(b) State the integral test and use it to determine the convergence of the series,

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}.$$
 [35 marks]

(c) By using the alternating series test, comment on the convergence of the series,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1}.$$
 [35 marks]

4. (a) Define a power series in x about point c with coefficients $a_n s$.

[10 marks]

(b) Find the interval of convergence and radius of convergence of the power series,

$$\sum_{n=1}^{\infty} \frac{(-1)^n n(x+3)^n}{4^n}.$$
 [30 marks]

(c) Show that the function f(x), which has derivatives of all order, can be expressed in a Taylor series,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n,$$

where $f^{(n)}(x)$ is the n^{th} -derivatives of f(x).

3.

[30 marks]

[30 marks]

(d) Expand the function, $\ln[z(z+1)]$, in a Taylor series about $z=z_0$ up to order