

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD YEAR EXAMINATION IN SCIENCE - 2010/2011 SECOND SEMESTER (March/May,2017) EXTMT. 307 - CLASSICAL MECHANICS SPECIAL REPEAT

Answer all Questions Time: Three hours

1. Two frames of reference S and S' have a common origin O and S' rotates with an constant angular velocity ω relative to S. If a moving particle P has its position vector as \underline{r} relative to O at time $t,$ show that :

(a)
$$
\frac{d\mathbf{r}}{dt} = \frac{\partial \mathbf{r}}{\partial t} + \underline{\omega} \wedge \mathbf{r}
$$
, and
\n(b) $\frac{d^2\mathbf{r}}{dt^2} = \frac{\partial^2 \mathbf{r}}{\partial t^2} + 2\underline{\omega} \wedge \frac{\partial \mathbf{r}}{\partial t} + \frac{\partial \underline{\omega}}{\partial t} \wedge \mathbf{r} + \underline{\omega} \wedge (\underline{\omega} \wedge \mathbf{r})$.

An object is thrown downward with an initial speed v_0 . Prove that after time t the object is deflected east of the vertical by the amount

$$
\omega v_0 \sin \lambda t^2 + \frac{1}{3} \omega g \sin \lambda t^3,
$$

where λ is the earth's co - latitude.

2. (a) With the usual notations, obtain the equations of motion for a system of N particles in the following forms:

i.
$$
M\underline{f}_G = \sum_{i=1}^N \underline{F}_i
$$
,
\nii. $\frac{d\underline{H}}{dt} = \sum_{i=1}^N r_i \wedge \underline{F}_i$,
\nwhere $\sum_{i=1}^N \underline{h}_i = \underline{H}$ and $\underline{h}_i = r_i \wedge m_i \underline{v}_i$.
\n(State clearly the results that you may use)

(b) A solid of mass M is in the form of a tetrahedron $OXYZ$, the edges OX, OY, OZ of which are mutually perpendicular, rests with XOY on a fixed smooth horizontal plane and YOZ against a smooth vertical wall. The normal to the rough face XYZ is in the direction of a unit vector \underline{n} . A heavy uniform sphere of mass m and center C rolls down the face causing the tetrahedron to acquire a velocity $-Vj$ where j is the unit vector along OY If $\overrightarrow{OC} = \underline{r}$, then prove that

$$
(M+m)V - m\underline{\dot{r}} \cdot \underline{j} = \text{constant}
$$

and that

$$
\frac{7}{5} \underline{\ddot{r}} = \underline{f} - \underline{n}(\underline{n} \cdot \underline{f}) \ ,
$$

where $\underline{f} = \underline{g} + \dot{V}\underline{j}$ and \underline{g} is the acceleration of gravity.

3. (a) With the usual notations obtain the $Euler's$ equations for the motion of the rigid body, having a point fixed, in the form:

$$
A\dot{\omega}_1 - (B - C)\omega_2\omega_3 = N_1,
$$

\n
$$
B\dot{\omega}_2 - (C - A)\omega_1\omega_3 = N_2,
$$

\n
$$
C\dot{\omega}_3 - (A - B)\omega_1\omega_2 = N_3.
$$

A body moves about a point O under no forces. The principle moment of inertia at O being $3A,5A$ and $6A$. Initially the angular velocity has component $\omega_1 = n, \omega_2 = 0, \omega_3 = 3$ about the corresponding principal axes. Show that at time t ,

$$
\omega_2 = \frac{3n}{\sqrt{5}} \tan\left(\frac{nt}{\sqrt{5}}\right).
$$

4. With the usual notations, derive the Lagrang's equation for the impulsive motion from the Lagrange's equations for a holonomic system in the following form

$$
\triangle \left(\frac{\partial T}{\partial \dot{q}_j} \right) = S_j \text{ for } j = 1, 2, ..., n.
$$

A uniform rod AB of length l and mass m is at rest on a horizontal smooth table. An impulse of magnitude I is applied to one end A in the direction perpendicular to AB. Prove that, immediate after the application of impulse,

- (a) the one end A of the rod AB has the velocity of magnitude $\frac{4I}{m}$
- (b) center of mass of the rod AB has the velocity of magnitude $\frac{1}{2}$ m
- (c) the rod rotates about the center of mass with angular velocity of magnitude $6I$ $^{\prime\prime}$
- 5. (a) Define *Hamiltonian* function in terms of Lagrangian function. Show that, with the usual notations, that the Hamiltonian equations are given by

$$
\dot{q}_j = \frac{\partial H}{\partial p_j}, \ \dot{p}_j = -\frac{\partial H}{\partial q_j} \text{ and } \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}.
$$

- (b) Prove that if the time t does not occur in Lagrangian function L , then the Hamiltonian function H is also not involved in t .
- (c) Write down the Hamiltonian function H and then find the equation of motion for a simple pendulum.
- 6. (a) Define the *poisson bracket*.

Show that for any function $f(q_i, p_i, t)$,

$$
\frac{df}{dt} = \frac{\partial f}{\partial t} + [f, H],
$$

where H is a Hamiltonian function.

(b) With the usual notations, prove that:

i.
$$
\frac{\partial}{\partial t} [f, g] = \left[\frac{\partial f}{\partial t}, g \right] + \left[f, \frac{\partial g}{\partial t} \right];
$$

ii. $[f, q_k] = -\frac{\partial f}{\partial p_k};$
iii. $[f, p_k] = \frac{\partial f}{\partial q_k}.$

(c) Show that, if f and g are constants of motion then their poisson bracket $[f, g]$ is also a constant of motion.