

ACADEMIC YEAR - 2010/2011 (JUNE, 2016) MTS 10 - NUMERICAL LINEAR ALGEBRA

iswer all Questions

Time: Three hours

(a) Define the term "elementary lower-triangular matrix".

Let A be an $n \times n$ matrix and A_r be the principle sub-matrix of A of order $r(r \le n)$. Prove that if $\det A_r \ne 0$ for r < n, then there exists a decomposition A = LU, where L is a product of elementary lower triangular matrices and U is an upper triangular matrix.

- (b) Define the term "positive definite" as applied to an $n \times n$ Hermitian matrix A. Prove that an Hermitian positive definite matrix A can be uniquely expressed as A = LU where L is a unit lower-triangular matrix and U is an upper-triangular matrix.
- (c) Show that an Hermitian matrix A is positive definite if and only if $A = GG^H$ where G is a non-singular lower-triangular matrix. Determine G such that

$$GG^{H} = \begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 5 & 2 & -3 \\ 0 & 2 & 5 & 1 \\ 1 & -3 & 1 & 4 \end{bmatrix}.$$

- (a) Define the term "elementary Hermitian matrix". Prove that any product of $n \times n$ elementary Hermitian matrices is
 - (b) Show that , for any real vector x ,there is a real elementary Hermitia (b) Let A = I L $H(\omega)$ such that $H(\omega)$ $x = c e_1$, where $c^2 = x^T x$ and $e_1 = (1,0)$ What is the optimal choice of the sign of c for the computation of ω
 - (c) Determine an upper triangular matrix U such that HA=U, where Uproduct of elementary Hermitian matrices and

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 4 & -1 \\ 2 & 5 & 0 \end{bmatrix},$$

making the optimal choice of sign in each stage of the process. $Ax = b \text{ where } b = (5, 0, -1)^T.$

(a) Define the term "spectral radius" of an $n \times n$ matrix. Let $\rho(A)$ denote the spectral radius of an $n \times n$ matrix A. Show $\epsilon>0$, there is a matrix norm such that

$$\rho(A) \le ||A|| < \rho(A) + \epsilon.$$

Hence show that if $\rho(A) < 1$ then I - A is non singular and $\frac{1}{1-\parallel A\parallel}$ for some matrix norm.

(b) Let A be a non-singular matrix and E a matrix such that $\|A\|$ for some matrix norm subordinate to a vector norm. Let Ax = AxSuppose that (A + E)z = r + e, where r = b - Ay and y vectors. Show that $x - (y + z) = (A + E)^{-1}[E(x - y) - e]$ and

$$\frac{\|x - (y + z)\|}{\|x\|} \le \frac{K(A)}{1 - K(A)} \frac{\|E\|}{\|A\|} \left[\frac{\|E\|}{\|A\|} \cdot \frac{\|x - y\|}{\|x\|} \right]$$

where K(A) is the condition number of A.

(a) Define the ter

Prove that a s

guess $x^{(0)}$, a se

$$x^{(r+1)} =$$

Show that

where M = (I $0 < \omega \le 1$, show The following ed Over -Relaxatio

Starting with $x^{(0)}$ and $x^{(2)}$

Define the term Let A be an $n \times n$ of elementary He matrix.

Determine a tridi

where S is a produ sign for the constr (a) Define the term "strictly diagonally dominant" as applied to an $n \times n$ matrix A.

Prove that a strictly diagonally dominant matrix is non singular.

(b) Let A = I - L - U be a strictly diagonally dominant, where L is strictly lower triangular and U is strictly upper triangular matrices. For arbitrary initial guess $x^{(0)}$, a sequence $\{x^{(r)}\}$ is defined by

$$x^{(r+1)} = (I - \omega L)^{-1} [\omega b + ((1 - \omega)I + \omega U)x^{(r)}], \quad r = 0, 1, 2...$$

Show that

$$x - x^{(r+1)} = M(x - x^{(r)}), \qquad r = 0, 1, 2...,$$

where $M = (I - \omega L)^{-1}[(1 - \omega)I + \omega U]$ and x is the solution of Ax = b. If $0 < \omega \le 1$, show that the sequence $x^{(r)}$ converges to x.

The following equations are to be solved by Gauss-Seidel iteration (Successive Over -Relaxation with a parameter $\omega = 1$):

$$4x_{1} + x_{3} + x_{4} = 1$$

$$x_{1} + 4x_{3} = 3$$

$$x_{1} + x_{2} + 4x_{4} = 4$$

$$4x_{2} + x_{4} = 2$$

Starting with $x^{(0)} = 0$ and using four significant digit arithmetic , obtain $x^{(1)}$ and $x^{(2)}$.

(a) Define the term "upper Hessenberg matrix".

Let A be an $n \times n$ matrix. Show that there exists a unitary matrix S, a product of elementary Hermitian matrices, such that S^HAS is an upper Hessenberg matrix

(b) Determine a tridiagonal matrix T such that

$$STS^{H} = \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 3 & 3 & 4 \\ 4 & 3 & 3 & 4 \\ 0 & 4 & 4 & 3 \end{bmatrix}.$$

where S is a product of elementary Hermitian matrices. Choose an appropriate sign for the construction of each elementary Hermitian matrix needed.

Q6. (a) Suppose that the eigenvalue λ_1 of largest modulus and a corresponding vector z_1 of an $n \times n$ matrix A have been computed by the Powerl Show that there is a non-singular matrix S such that

$$S^{-1}AS = \begin{bmatrix} \lambda & \vdots & b^T \\ \dots & \dots & \dots \\ 0 & \vdots & B \end{bmatrix},$$

where B is an $(n-1) \times (n-1)$ matrix and b is an (n-1)- column

- (b) Describe how the other eigenvalues and eigenvectors of A could be
- (c) It is given that the matrix

$$A = \left[\begin{array}{rrr} 2 & 3 & 2 \\ 10 & 3 & 4 \\ 3 & 6 & 1 \end{array} \right]$$

has an largest eigenvalue 11 with corresponding eigenvector (0.5). Obtain a 2×2 matrix whose eigenvalues are the other eigenvalue