

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE-2010/2011 (APRIL/MAY' 2013) FIRST SEMESTER CH 303 ELECTROCHEMISTRY

(Proper & Repeat)

Answer all questions

Time Allowed: One hour

[Faraday constant = 96485 C mol^{-1} , 2.303 RT/F = 0.0591 V]

1) a) i) Define the term 'Temperature coefficient'

(05 marks)

ii) The emf of the cell $Pb(s)/PbCl_2(s)/KCl(aq)/AgCl(s)/Ag(s)$ is given by the expression

$$E = 0.00823 T + 0.0000174(T^2 - 25)$$

Where T is the temperature in Kelvin. Write the cell reaction and calculate ΔG , ΔH and ΔS for the reaction occurring in the cell at 25 °C

(30 marks)

- b) For the cell $Ag(s)/AgBr(s)/KBr(aq,0.05M)//Cd(NO_3)_2(aq,0.01M)/Cd(s)$ at 25 °C
 - i) Determine $\log \gamma_{\pm}(Cd(NO_3)_2)$, $\log \gamma_{\pm}(KBr)$ by using Debye-Huckel limiting law
 - ii) Estimate E_{cell} [assume $\gamma_{\pm}(Cd^{2+}) = \gamma_{\pm}(Cd(NO_3)_2), \gamma_{-}(Br^{-}) = \gamma_{\pm}(KBr)$]

$$[[E_{Cd^{2+},Cd}^{\theta} = -0.40 \ V, E_{Ag,AgBr,Br}^{\theta}] = 0.07 \ V]$$

(45 marks)

Contd...

c) Briefly explain the conductrimetric titration of weak acid and strong base.

(20 marks)

2) (a) (i) Define the term 'Transport number'

(05 marks)

(ii) For a strong electrolyte $A_{v_+}B_{v_-}$ by using the usual notations show that the transport number t_+ is

$$t_{+} = \frac{v_{+}\Lambda_{+}}{v_{+}\Lambda_{+} + v_{-}\Lambda_{-}}$$

(20 marks)

(iii) The limiting molar conductivities at 25 0 C for $La^{3+}(aq)$ and $SO_{4}^{2-}(aq)$ are 209 and 160 Scm²mol⁻¹ respectively. Find the limiting molar conductivity of La_{2} (SO₄)₃ (aq) and transport number of La^{3+} and SO_{4}^{2-} .

(25 marks)

- (b) In a Hittorf experiment a CdSO₄ containing 115.60 g of CdSO₄ per 1000g of solution was electrolysed between Cd electrodes. A current of 0.1 amp was passed for 5 hours. After electrolysis the mass of the anode solution was found to be 171.66 g and it contained 20.72 g of CdSO₄. Calculate
 - i) the electricity passed through the solution in faraday (F)
 - ii) the net gain of Cd2+ ions in the anodic compartment
 - iii) the transport number of the Cd²⁺ ions in the solution

[Cd=112.4 g]

(50 marks)
