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1. (a) Define the term eigenvalue and eigenveictor of a.linear transformation.

Find the eigenvalues and eigenvectors of the matrix

(b) i. Prove that eigenvectors that corresponding to distinct eigenvalues of a

linear transformation T : V -+ V are linearly independent.

ii. Show that 0 is an eigenvalue of 7 if and only if T is singular"

iii. Suppose ) is an eigenvalue of an invertible operator ?. Show that .\-1 is
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an eigenvalue of T*1.

(c) Orthogonally diagonalize the matrix
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2. Define the term minimum polynomial of a square matrix'

(a) State the Cayley - Hamilton theorem.

matrix

3. (a)

Find the minimum polynomial of the square
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Prove-that for any square matrix A, the minimum polynomial exists and

unique.

(ao\
Let M : l 

,- " l, where .4 and B arc square matrices. Show that tl

\o B)
minimum polynomial m(t) of M is the least common multiple of the minimu:

polynomials g(t) and h(t) of A and B respectively.

Find an orthogonal transformation which reduces theJollowing quadratic for

to a diagonal form ,

sr2, + erl + 7"? - 4rp2 * 4r2r{,: I.

(b) Simultaneously diagonalize the following pair of quadratic forms

dr: r? - rl - 2*3 - 2r1n2 { 4r2r3,

dz : r? + 2rl + 2n2t - 2r1r2 - 2r2n3'

4. (a) What is meant by an inner product on a vector space'

Let,r: lrr, fr2,...,frn),A: (At,92,...,A) e iR'', where :ri,Ai'€ R, ti :1,2,"',

Let the inner product ( ',. ) be defined on lR' as

1 r,U ): raT :L'iAu'

Show that (R', < 1,. >1is an inner product'r;....

State and prove Cauchy Schwarz Inequality.

State the Gram Schmidt Process.

Find the orthonormal set for span of. M \n IR'4, where

M : {(1,0, -tr,0)o, (0, r,2,1)r, (2, L, -1,0)7"}.

(b)

(.)


