

Answer all Questions		Time: Two hours
	عد	
1. (a) Define the following terms:	8	
i. Topology on a set;		
ii. Subspace of a topological space;		
iii. Neighborhood of a point.	ъ.	

- (b) Prove that the intersection of two topologies of a set X is again a topology.
- (c) i. Let (X, τ) be a topological space. Prove that a subset A of X is open if and only if it is a neighborhood of each of its points.
 - ii. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ be a topology on X. Find N(a), N(b) and N(c). (That is, neighborhoods of 'a', 'b' and 'c').
- (d) Let (Y, τ_Y) be a subspace of a topological space (X, τ) . Prove that $A \subseteq Y$ is closed in (Y, τ_Y) if and only if $A = F \cap Y$ for some closed subset F of X.
- 2. (a) Define the following terms in a topological space (X, τ) :
 - i. Base;
 - ii. Subbase;
 - iii. Disconnected Set.

(b) Let X be a non - empty set and let \mathbb{B} be a collection of subsets of X such a way that

i.
$$X = \bigcup_{B_i \in \mathbb{B}} B_i$$

ii. $\forall B_1, B_2 \in \mathbb{B}$ and $\forall x \in B_1 \cap B_2, \exists B \in \mathbb{B}$ such that $x \in B \subseteq B_1 \cap B_2$ Prove that there exist a unique topology τ for X such that \mathbb{B} is a base

- (c) Prove that a topological space (X, τ) is disconnected if and only if the a non empty proper subset of X which is both open and closed.
- (d) Let (X, τ) be a topological space. Prove that X is disconnected if an there are non - empty subsets A, B of X such that $X = A \cup B$ and $\overline{A} \cap B = A \cap \overline{B} = \phi$.
- 3. Explain what is meant by the statement that A is a compact subset of a top space (X, τ) .
 - (a) Let (X, τ) be a topological space and let (Y, τ_Y) be its subspace and let Prove that A is compact in (Y, τ_Y) if and only if A is compact in (X, τ_Y)
 - (b) Prove that continuous image of a compact subset in a topological compact.
 - (c) Prove that continuous image of a sequentially compact set is sequential pact.
 - (d) Let A and B be two compact subsets of a topological space (X, τ) . Pr $(A \cup B)$ is compact.
- (a) What is meant by a function f from a topological space (X, τ₁) to a top space (Y, τ₂) is continuous at a point x₀ ∈ X?.
 - i. Let (X, τ_1) and (Y, τ_2) be two topological spaces and let $f: X \to function$. Prove that f is continuous on X if and only if $f^{-1}(F)$ in (X, τ_1) for each closed set F in (Y, τ_2) .
 - ii. Suppose that (X, τ_1) and (Y, τ_2) are topological spaces and f: Xa function and \mathbb{B} is any basis for τ_2 . Prove that f is continuous and only if for each $B \in \mathbb{B}, f^{-1}(B)$ is an open set in X.

- (b) Define Frechet Space $(T_1 \text{Space})$ and Hausdorff Space $(T_2 \text{Space})$.
 - i. Prove that every T_2 Space is a T_1 Space. Is the converse true? Justify your answer.
 - ii. Prove that a topological space X is a T_1 Space if and only if every singleton subset of X is closed.