27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/200
THIRD YEAR SECOND SEMESTER (April/May - 2016)
EXTMT 307 - CLASSICAL MECHANICS
\section*{REPEAT}

Answer all Questions
Time: Three hours

1. Two frames of reference S and S^{\prime} have a common origin O and S^{\prime} rotates with an constant angular velocity $\underline{\omega}$ relative to S. If a moving particle P has its position vector as \underline{r} relative to O at time t, show that:
(a) $\frac{d \underline{r}}{d t}=\frac{\partial \underline{r}}{\partial t}+\underline{\omega} \wedge \underline{r}$, and
(b) $\frac{d^{2} \underline{r}}{d t^{2}}=\frac{\partial^{2} \underline{r}}{\partial t^{2}}+2 \underline{\omega} \wedge \frac{\partial \underline{r}}{\partial t}+\frac{\partial \underline{\omega}}{\partial t} \wedge \underline{r}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r})$.

An object is thrown downward with an initial speed v_{0}. Prove that after time t the object is deflected east of the vertical by the amount

$$
\omega v_{0} \sin \lambda t^{2}+\frac{1}{3} \omega g \sin \lambda t^{3}
$$

where λ is the earth's co - latitude.
2. (a) With the usual notations, obtain the equations of motion for a systen particles in the following forms:

$$
\begin{aligned}
& \text { i. } M \underline{f}_{G}=\sum_{i=1}^{N} \underline{F}_{i} \\
& \text { ii. } \frac{d \underline{H}}{d t}=\sum_{i=1}^{N} \underline{r}_{i} \wedge \underline{F}_{i} \\
& \text { where } \sum_{i=1}^{N} \underline{h}_{i}=\underline{H} \text { and } \underline{h}_{i}=\underline{r}_{i} \wedge m_{i} \underline{v}_{i} \text {. }
\end{aligned}
$$

(State clearly the results that you may use)
(b) A solid of mass M is in the form of a tetrahedron $O X Y Z$, the edges $O X,($ of which are mutually perpendicular, rests with $X O Y$ on a fixed smoo izontal plane and $Y O Z$ against a smooth vertical wall. The normal rough face $X Y Z$ is in the direction of a unit vector \underline{n}. A heavy uniform of mass m and center C rolls down the face causing the tetrahedron to a velocity $-V \underline{j}$ where \underline{j} is the unit vector along $O Y$ If $\overrightarrow{O C}=\underline{r}$, then prove that

$$
(M+m) V-m \dot{\underline{r}} \cdot \underline{j}=\mathrm{constant}
$$

and that

$$
\frac{7}{5} \ddot{\underline{r}}=\underline{f}-\underline{n}(\underline{n} \cdot \underline{f})
$$

where $\underline{f}=\underline{g}+\dot{V} \underline{j}$ and \underline{g} is the acceleration of gravity. :
3. With the usual notation obtain the Euler's equations for the motion of th body, having a point fixed, in the form:

$$
\begin{aligned}
& A \dot{\omega}_{1}-(B-C) \omega_{2} \omega_{3}=N_{1} \\
& B \dot{\omega}_{2}-(C-A) \omega_{1} \omega_{3}=N_{2} \\
& C \dot{\omega}_{3}-(A-B) \omega_{1} \omega_{2}=N_{3}
\end{aligned}
$$

A body moves about a point O under no forces. The principle moment of at O being $3 A, 5 A$ and $6 A$. Initially the angular velocity has components u $\omega_{2}=0, \omega_{3}=3$ about the corresponding principal axes. Show that at time t,

$$
\omega_{2}=\frac{3 n}{\sqrt{5}} \tan \left(\frac{n t}{\sqrt{5}}\right)
$$

4. Obtain the Lagrange's equations of motion using D'Alembert's principle for a conservative holonomic dynamical system.
Use the Lagrangian method and obtain the equations of motion for a spherical pendulum of length r.
5. (a) Define Hamiltonian function in terms of Lagrangian function .

Show that, with the usual notations, that the Hamiltonian equations are given by

$$
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \dot{p} j=-\frac{\partial H}{\partial q_{j}} \text { and } \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} .
$$

(b) Prove that if the time t does not occur in Lagrangian function L, then the Hamiltonian function H is also not involved in t.
(c) Write down the Hamiltonian function H and then find the equation of motion for a simple pendulum.
6. (a) Define the poisson bracket.

Show that for any function $f\left(q_{i}, p_{i}, t\right)$,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+[f, H]
$$

where H is a Hamiltonian function.
(b) With the usual notations, prove that:
i. $\frac{\partial}{\partial t}[f, g]=\left[\frac{\partial f}{\partial t}, g\right]+\left[f, \frac{\partial g}{\partial t}\right]$;
ii. $\left[f, q_{k}\right]=-\frac{\partial f}{\partial p_{k}}$;
iii. $\left[f, p_{k}\right]=\frac{\partial f}{\partial q_{k}}$.
(c) Show that, if F and g are constant of motion then their poisson bracket $[f, g]$ is a constant of motion.

