EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/20009
THIRD YEAR SECOND SEMESTER (April/May, 2016) EXTMT 309 - NUMBER THEORY (REPEAT)

Answer all Questions
Time: Two hours

Q1. (a) Define what it means by the greatest common divisor $\operatorname{gcd}(a, b)$ of two integers a and b, not both zero.

Find the $\operatorname{gcd}(3270,729)$.
(b) Show that the square of any odd integer is of the form $8 k+1$, where k is an integer.
(c) A customer bought a dozen piece of fruit apple and orange for Rs 1.32. If an apple cost 3 cents more than an orange and more apples than oranges purchased, then determine how many pieces of each kind were bought.

Q2. (a) State and prove the Euler's theorem.
(b) State and prove the Fermat's Little theorem.
(c) Prove that if n is relatively prime to 72 , then $n^{12}=1(\bmod 72)$.
(d) Prove that $1+a+a^{2}+\ldots+a^{\phi(m)-1} \equiv 0(\bmod m)$ if $\operatorname{gcd}(a, m)=1$, $\operatorname{gcd}(a-1, m)=1$.

Q3. Define what are meant by the following terms:
Pseudo Prime; ,
Carmichael Number.
(a) If $d, n \in \mathbb{N}$ and $d \mid n$, then show that $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)$.
(b) Show that $561=3.11 .17$ is a pseudo prime to the base 2 and a can number.
(c) If $n=q_{1} q_{2}, \ldots, q_{k}$, where q_{j} s are distinct primes that satisfy $\left(q_{j}-1\right) \mid(n$. all j, then prove that n is a Carmichael number.

Q4. (a) State what are meant by saying
(i) an integer a belongs to the exponent h modulo m;
(ii) an integer g is called a primitive root modulo m.
(b) If g is a primitive root modulo m, then prove that $g, g^{2}, \ldots, g^{\phi(m)}$ are m incongruent and form reduced residue system modulo m :
(c) Prove that, if a belongs to the exponent h modulo m and $\operatorname{gcd}(k, h)=$ a^{k} belongs to the exponent $\frac{h}{d}$ modulo m.

