LIE GROUP METHOD OF INTEGRATION OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS

BY THAVANAYAGAM EALASUKANTHAN

DEGREE OF BACHELOR OF SCIENCE (SPECIAL IN MATHEMATICS)

62011

FACULTY OF SCIENCE EASTERN UNIVERSITY, SRI LANKA OCTOBER 2005

ABSTRACT

In this research report, we present the Lie group-theoretical method of solving non-linear ordinary differential equations (ODEs) by applying the symmetries of those equations. For the application of this method the first and second-order non-linear ODEs are considered. Symmetries of the equations are derived and the corresponding group-invariant solutions are constructed.

Contents

ABSTRACT		ii	
D	DECLARATION		
D	DEDICATION		
A	ACKNOWLEDGEMENTS		
C	Contents		
In	Introduction		
1	The	eory of Lie Group Analysis of Ordinary Differential Equations	3
	1.1	Transformations in \mathbb{R}^2	3
	1.2	Group of Extended Transformations	7
		1.2.1 (Transformations of The Derivatives $y^{(k)}$)	7
-7	1.3	Symmetries of Ordinary Differential Equations \	10
	1.4	Notions on Lie algebra	11
	1.5	Methods of Symmetry Reduction of First and Higher-order ODEs	13
		1.5.1 Reduction of The Order by One	13
		1.5.2 Consecutive Reduction of order	13
2	Application		14
	2.1	Symmetry of a first-order ODE	14
	2.2	Integration of the ODE (2.1.1) using its symmetry	17
	2.3	Lie Symmetries and Integration of a Second-Order ODE	21
C	Conclusion		
Pibliography			28