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ABSTRACT 
 

Plant disease control is mainly based on the use of fungicides, bactericides, and insecticides-chemical 
compounds toxic to plant invaders, causative agents, or vectors of plant diseases. However, the 
detrimental effect of these chemicals or their degradation products on the environment and human 
health strongly imposes the search for novel, harmless means of disease control. Therefore, it is 
essential to introduce environmentally-friendly alternative measures for management of plant 
diseases. Induced plant resistance is one of the promising non-chemical strategies for the effective 
management of diseases.  The host plant mediated resistance is governed by defense response genes 
encoding for production of various pathogenesis-related (PR) proteins. This review chiefly explains 
the biochemical response of plant defense mechanism pertaining to defense-related enzymes which 
have been identified as PR proteins. 
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Introduction 
 
In nature, plants are attacked by a diverse 
range of biotic agents including pathogens 
and herbivorous insects which can have 
devastating effects on host plants 
(Ebrahim et al., 2011).  Application of 
pesticides has been the chief method of 
controlling plant diseases (Prasannath et 
al., 2014). However, there is a growing 
concern in developing alternative 
measures aiming to minimize the harmful 
impacts of pesticides on the environment 
and human health. Inducing systemic 
resistance against plant pathogens is one 
such environmentally-friendly approach 
of disease management (Prasannath and 
De Costa, 2015). 
 
When plants are attacked by pathogens 
and herbivores, these stresses can induce 
biochemical and physiological changes in 
plants, such as physical strengthening of 
the cell wall through lignification, 
suberization, and callose deposition; by 

producing phenolic compounds, 
phytoalexins and pathogenesis-related 
(PR) proteins which subsequently prevent 
various pathogen invasion (Bowles, 1990). 
Among these, production and 
accumulation of PR proteins in plants in 
response to invading pathogen is very 
important. Plants enhance defense 
responses by inducing activity of a broad 
spectrum of defense enzymes which are 
PR proteins, namely peroxidase, β-1,3-
glucanase, chitinase, polyphenol oxidase 
and phenylalanine ammonia lyase which 
can slow an herbivore's feeding and also 
the rate of disease spread (Deborah et al., 
2001; Kumari and Vengadaramana, 2017). 
 

      Host plant mediated resistance against 
pathogens 

  
Interactions between plants and 
pathogens can lead in to successful 
infection (compatible response) or 
resistance (incompatible response). In 
incompatible relations, viruses, bacteria or 

Plant defence-related enzymes 
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fungi which infect plants will elicit a set of 
localized responses in and around the 
infected host cells. These responses consist 
with an oxidative burst (Lamb and Dixon, 
1997), which can lead to cell death 
(Kombrink and Schmelzer, 2001). The 
pathogen may be ‘trapped’ in dead cells. It 
can lead to prevent the spreading from the 
site of primary infection. There are local 
responses in the surrounding cells which 
inhibit the penetration of pathogens by 
changing cell wall composition and 
synthesis of antimicrobial compounds 
such as PR proteins and phytoalexins 
(Kuc, 1995; Hammerschmidt, 1999). Also 
plants respond to attacks by pathogens 
through various defense responses. The 
accumulations of several factors like 
defense-related enzymes and inhibitors 
which lead to prevent infection of 
pathogens are several defense responses. 
The enzyme activities and total phenol 
content were increased significantly in 
resistant cultivars upon pathogen 
inoculation (Vanitha et al., 2009).  
 
Plants possess a range of active defense 
mechanisms which respond to biotic 
stresses. Diseases can be reduced due to 
trigger of defense mechanisms in plants 
by a stimulus, prior to infection by a plant 
pathogen. Systemic acquired resistance 
(SAR) and induced systemic resistance 
(ISR) are two forms of induced resistance 
in plant. Combination of ISR and SAR can 
increase defense against pathogens that 
are resisted through both pathways than 
ISR and SAR alone (Choudhary, 2007).  
 

      Induced Systemic Resistance (ISR) 
 
When an antagonist is present at the site 
of exposure, an antimicrobial substance 
could be synthesized by the biological 
control agent and transported through the 
plant, inhibiting the pathogen directly. 
The induced resistance does not 
necessarily need to be systemic, but a local 
protection can be formed as a result of the 
induced resistance. ISR is induced by 
plant growth promoting rhizobacteria 

which are believed to produce a 
translocatable signal that induces 
protection in tissues far from the roots 
where the antagonist was delivered. A 
systemic response of the plant to an 
elicitor shows that induced resistance is 
taking place (van Loon et al., 1998). ISR is 
independent of salicylic acid, but it is 
mediated by jasmonic acid and/or 
ethylene, which are produced following 
applications of some nonpathogenic 
rhizobacteria (He et al., 2004). ISR is 
accompanied by the expression of a set of 
genes distinct from the PR protein genes 
(Pieterse et al., 1998).  
 

       Systemically Acquired Resistance (SAR)  
 
Plants can acquire resistance against the 
initiating of diseases through various 
biological agents including necrotizing 
pathogens, non-pathogens and soil borne 
rhizosphere bacteria and fungi. SAR is a 
mechanism of induced defense responses 
(Gajanayaka et al., 2014). In SAR a mobile 
signal is generated in the site of induction 
and translocated in the plant, bringing 
about an induced state in tissues, far from 
the site of exposure to the elicitor (van 
Loon et al., 1998). It provides long-lasting 
protection against a broad spectrum of 
microorganisms. SAR requires the signal 
molecule salicylic acid and it is associated 
with accumulation of PR proteins, which 
are believed to contribute to resistance 
(He et al., 2004). The development of SAR 
is associated with various cellular defense 
responses, such as synthesis of PR 
proteins and phytoalexins, rapid changes 
in cell wall, and enhanced activity of 
various defense-related enzymes (Durrant 
and Dong, 2004). SAR is induced 
systemically after inoculation with 
necrotizing pathogens or application of 
some chemicals such as salicylic acid 
(Pieterse et al., 1998; Prasannath et al., 
2014). Certain plant growth promoting 
microorganisms could stimulate defense 
activity and enhance plant resistance 
against soil borne pathogens (Whipps et 
al., 2001). 
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Pathogenesis-related (PR) proteins 
   

PR proteins are a structurally diverse 
group of plant proteins that are 
considered to play important roles in 
plant disease resistance (Mahendranathan 
et al., 2016). They are widely distributed in 
plants in trace amounts, but are produced 
in much greater concentration following 
pathogen attack or stress. PR proteins 
exist in plant cells intracellularly and also 
in the intercellular spaces, particularly in 
the cell walls of different tissues (Agrios, 
2005). The several groups of PR proteins 
have been classified according to their 
function, serological relationship, amino 
acid sequence, molecular weight, and 
some other properties. Currently PR 
proteins are categorized into 17 families 
according to their properties and 
functions, including -1,3-glucanases, 
chitinases, thaumatin-like proteins, 
peroxidases, ribosome-inactivating 
proteins, defensins, thionins, nonspecific 
lipid transfer proteins, oxalate oxidase, 
and oxalate-oxidase-like proteins (van 
Loon and van Strien, 1999). PR proteins 
are either extremely acidic or extremely 
basic and therefore are highly soluble and 
reactive (Legrand et al., 1987). The signal 
compounds responsible for induction of 
PR proteins include salicylic acid, 
ethylene, xylanase, polypeptide systemin, 
jasmonic acid and probably others 
(Agrios, 2005). 
 
Defense-related enzymes 
  
Defense enzymes such as peroxidase, 
polyphenol oxidase, phenylalanine 
ammonia lyase, chitinase and β-1,3-
glucanase are related to resistance 
inducement in plants (Prasannath and De 
Costa, 2015; Gajanayaka et al., 2014; 
Seneviratne et al., 2014). Peroxidases have 
been implicated in a range of defense-
related processes, including the 
hypersensitive response, lignification, 
cross-linking of phenolics and 
glycoproteins, suberization and  
 

phytoalexin production (Nicholson & 
Hammerschmidt, 1992; Wojtaszek, 1997). 
Polyphenol oxidase catalyzes the phenolic 
compounds to quinones, thus decreasing 
of nutritional quality of food and reducing 
protein digestibility (Felton and Duffey, 
1990; Felton et al., 1994). The 
intensification of production of phenolic 
compounds, known as defense molecules 
of plants against pathogens and insects, is 
indicated by an increase in phenylalanine 
ammonia lyase activity in wounded plant 
tissues (Bi and Felton, 1995). Chitinase 
and β-1,3-glucanase are responsible for 
the hydrolysis of cell wall components in 
sequence such as chitin and β-1,3-glucans 
(Ebrahim et al., 2011).  
 
Peroxidases 
 
Peroxidases are a distinguished class of 
PR proteins and induced in host plant 
tissues by pathogen infection. They belong 
to PR protein 9 subfamily and are 
expressed to limit cellular spreading of 
infection through establishment of 
structural barriers or generation of highly 
toxic environments by massively 
producing reactive oxygen species 
(Passardi et al., 2005). Peroxidase activity 
or peroxidase gene expression in higher 
plants is, indeed, induced by fungi (Sasaki 
et al., 2004), bacteria (Lavania et al., 2006), 
viruses (Diaz-Vivancos et al., 2006), and 
viroids (Vera et al., 1993). Cross-linking of 
the phenolic monomers in oxidative 
coupling of lignin subunits has been 
associated with peroxidase using H2O2 as 
oxidant. One significant event in plant 
defense reactions is oxidative burst, a 
general early response of host plant cells 
to pathogen infection and elicitor 
treatment (Almagro et al., 2009). 
Peroxidase also participates in the 
production of ethylene the concentration 
of which increases frequently in 
pathogenesis process (Tudzynski, 1997).  
 
Peroxidase is a key enzyme in the 
biosynthesis of lignin and suberin. 
Peroxidases have been associated with a 
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number of physiological functions that 
may contribute to resistance, through 
hypersensitive responses, oxidation of 
hydroxyl cinnamyl alcohol into free 
radical intermediates, phenol oxidation, 
polysaccharide cross linking, cross linking 
of extension monomers, and the 
deposition of phenolic material in plant 
cell walls during resistance reactions 
(Thakker et al., 2013). When peroxidase 
level increases due to the induced 
systemic resistance (Prasannath et al., 
2014), quick synthesis of reactive oxygen 
derivatives by oxidative burst leads to cell 
death and inhibits pathogenic activities 
(Halfeld-Vieira et al., 2006). Peroxidase 
oxidizes phenolics to quinines and 
generates hydrogen peroxide. It is 
antimicrobial and also releases highly 
reactive free radicals and further increases 
the rate of polymerization of phenolic 
compounds into lignin-like substances. 
These substances are then deposited in 
cell walls and papillae and hinder the 
further growth and development of the 
pathogen (Agrios, 2005). 
 
β-1,3-glucanases 
 
They have been classified as PR-2 proteins 
which are β-glucanases (glucan endo-1,3-
β-glucosidases) able to catalyze endo-type 
hydrolytic cleavage of the 1,3-β-D-
glucosidic linkages in β-1,3-glucans. β-1,3-
Glucans are the major components of the 
cell walls of oomycetes, a group of fungi 
that do not contain chitin (Wessels et al., 
1981). The induction of β-glucanase as 
part of the hypersensitive reaction is a 
stereotypic response; the pattern of 
induction is similar for viral, bacterial, and 
fungal pathogens. It creates resistance 
against various fungi such as Aspergillus 
parasiticus, A. flavs, Blumeria graminis, 
Colletotrichum lagenarium, Fusarium 
culmorum, Fusarium oxysporum, fusarium 
udum, Macrophomina phaseolina and 
Treptomyces sioyaensis (Rezzonico, 1998; 
Wu and Bradford, 2003; Hong and Meng, 
2004; Wrobel-Kwiatkowska et al., 2004, 
Liang et al., 2005; Roy-Barman et al., 2006). 

β-glucanases participate in the 
decomposition of glucans like callose 
which occurs in plant tissues as one of the 
components of wall modifications 
involved in resistance responses (Smart, 
1991). Even though antifungal β-glucanase 
I appear to be tailored for defense against 
fungi, other studies of β-glucanase I-
deficient mutants generated by antisense 
transformation suggest that these 
enzymes also play a vital role in viral 
pathogenesis (Beffa et al., 1996). The endo-
type β-1,3-glucanase enzyme seems to be 
most important for the degradation of the 
callosic walls, while the exotype β-1,3-
glucanase is involved in the further 
hydrolysis of released oligosaccharides. It 
has been proposed that these 
glucanohydrolases perform in at least two 
different ways: directly, by degrading the 
cell walls of the pathogen and indirectly, 
by promoting the release of cell wall-
derived materials that can act as elicitors 
of defense reactions (Bowles et al., 1990). 
 
Chitinases  
 
Chitinases are large and diverse group of 
enzymes and also one of the important 
plant pathogenesis related (PR) protein 
that degrades chitin, it improves plant 
defence against chitin containing plant 
pathogens (Jalil et al., 2015). -1,3-glucan 
and chitin, polymer of N-
acetylglucosamine are major cell wall 
components of many fungi. Since -1,3-
glucanase and chitinases have been shown 
to be capable of attacking cell wall of 
fungal pathogens, these enzymes have 
been proposed as direct defense enzymes 
of plants (Abeles et al., 1970). In addition, 
Mauch et al. (1988) reported that in 
combination, chitinase and -1,3-
glucanase act synergistically to inhibit 
fungal growth. The mode of action of 
chitinase is relatively simple. They 
degrade the cell wall chitin polymers in 
situ, resulting in a weakened cell wall and 
rendering fungal cells osmotically 
sensitive (Jach et al., 1995). These 
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chitinases have significant antifungal 
activities against plant pathogenic fungi 
like Alternaria spp. for rice grain 
discoloration, Rhizoctonia solani for rice 
sheath blight, Bipolaris oryzae for rice 
brown spot, Botrytis cinerea for tobacco 
blight, Curvularia lunata for clover leaf 
spot, Fusarium oxysporum, F. udum, 
Mycosphaerella arachidicola and Pestalotia 
theae for tea leaf spot (Chu and Ng, 2005; 
Saikia et al., 2005; Kirubakaran and 
Sakthivel, 2006).  The level of protection 
observed in the plants is variable and may 
be influenced by the specific activity of the 
enzyme, its localization and concentration 
within the cell, the characteristics of the 
fungal pathogen, and the nature of the 
host-pathogen interaction (Punja and 
Zhang, 1993). 
 

       Phenylalanine ammonia lyase (PAL) 
 
PAL is the key enzyme that is responsible 
for linking primary metabolism of 
aromatic amino acids with secondary 
metabolic products (MacDonald and 
Dcunha, 2007). PAL catalyzes the non-
oxidative deamination of phenylalanine in 
to trans-cinnamic acid and ammonia 
which is the initial step in the biosynthesis 
of phenolic compounds. PAL is a reliable 
treatment for the genetic condition 
phenylketonuria, due to the natural ability 
of the enzyme to breakdown L-
phenylalanine (MacDonald and Dcunha, 
2007).  PAL is one of the most extensively 
studied enzymes in plants due to 
synthesis of various phenolic compounds 
as well as anthocyanin which are 
responsible for the resistance of plant 
pathogens (Dixon and Paiva, 1995). 
Changes in PAL activity can take place 
during pathological events (Seneviratne et 
al., 2014). PAL activity can be induced by 
the plant hormone ethylene and plant 
signal molecules including salicylic acid 
and jasmonic acid (Campos-Vargas and 
Saltveit, 2002; Kim et al., 2007), and also it 
can be induced by various biotic and 
abiotic stresses such as pathogen invasion, 
wounding, chilling and ozone (Lafuente et 

al., 2003). When treated strawberry plants 
with abscisic acid, anthocyanin and PAL 
activity are increased (Jiang and Joyce, 
2003). All phenylpropanoids compounds 
are derived from cinnamic acid, which is 
formed from phenylalanine by the activity 
of PAL. These phenylpropanoids are 
accountable for disease resistance, crop 
development and mechanical support 
(Barber and Mitchell, 1997; Chen et al., 
2007; Harakava, 2005) as well as insect 
pest damages (War et al., 2012). PAL 
activity may be regulated by feedback 
inhibition by the pathway product, 
cinnamic acid, which may modify the 
expression of the PAL gene (Christensen 
et al., 2001; Del Rio et al., 2004).  
 
Polyphenol oxidase (PPO) 
 
PPOs are a group of copper containing 
enzymes that catalyze oxidation of 
hydroxy phenols to their quinone 
derivatives, which have antimicrobial 
activity (Chunhua et al., 2001). Because of 
its reaction products and wound 
inducibility, PPO plays a role in defense 
against plant pathogens (Mayer and 
Harel, 1979). Plants immediately respond 
to pathogens so there is an immediate rise 
in PPO indicating immediate synthesis of 
antimicrobials to ward off the pathogens. 
Pathogen-induced PPO activity continues 
to be reported for various plant taxa, 
including monocots and dicots (Chen et 
al., 2000; Deborah et al., 2001). Increase of 
PPO activity was reported in banana roots 
treated with Fusarium oxysporum derived 
elicitor by Thakker et al. (2007). A striking 
increase of PPO activity was observed in 
banana roots treated with Psuedomonas 
fluorescens against fusarium wilt 
(Sarvanan et al., 2004). Similarly, studies 
showing correlations of high PPO levels in 
cultivars or lines with high pathogen 
resistance continue to provide support for 
a pathogen defense role of PPO (Raj et al., 
2006). Several groups have also attempted 
to correlate the protective effects of 
rhizosphere bacteria with an induction of 
defense enzymes including PPO, with 
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mixed success (Chen et al., 2000; 
Ramamoorthy et al., 2002). 
 
Li and Steffens (2002) suggested several 
possibilities, including general toxicity of 
PPO-generated quinones to pathogens 
and plant cells, accelerating cell death, 
alkylation and reduced bioavailability of 
cellular proteins to the pathogen, cross-
linking of quinones with protein or other 
phenolics, forming a physical barrier to 
pathogens in the cell wall, and quinone 
redox cycling leading to H2O2 and other 
reactive oxygen species (Jiang and Miles, 
1993). While reactive oxygen species are 
known to be important factors in plant 
pathogen interactions and defense 
signaling, PPO is implicated in the 
formation of melanin-like polymers in 
potato black spot lesions (Stevens et al., 
1998). However, none of these hypotheses 
of how PPO might affect pathogens has 
been tested rigorously so far. 
 
Conclusion 

 
Plants protect themselves against biotic 
factors by physical strengthening of the 
cell wall through lignification, 
suberization, and producing various PR 
proteins including defense-related 
enzymes such as peroxidase, β-1,3-
glucanase, chitinase, phenylalanine 
ammonia lyase and polyphenol oxidase in 
response to pathogen infection. These 
defense enzymes are also induced in 
plants through application of exogenous 
substances so that more studies are 
needed to investigate the defense 
responses that are triggered by these 
elicitor treatments. Thus, the knowledge 
on plant defense-related enzymes can 
definitely be beneficial for the 
development of new control strategies. 
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