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New classes of exact solutions to the Einstein-Maxwell system is found in closed form by assuming that the hypersurface 𝑡 =
constant is spheroidal. This is achieved by choosing a particular form for the electric field intensity. A class of solution is found
for all positive spheroidal parameter 𝐾 for a specific form of electric field intensity. In general, the condition of pressure isotropy
reduces to a difference equation with variable, rational coefficients that can be solved. Consequently, an explicit solution in series
form is found. By placing restrictions on the parameters, it is shown that the series terminates and there exist two classes of solutions
in terms of elementary functions. These solutions contain the models found previously in the limit of vanishing charge. Solutions
found are directly relating the spheroidal parameter and electric field intensity. Masses obtained are consistent with the previously
reported experimental and theoretical studies describing strange stars. A physical analysis indicates that these models may be used
to describe a charged sphere.

1. Introduction

In recent years, there have been several investigations into the
Einstein-Maxwell system of equations for static spherically
symmetric gravitational fields with isotropic pressures in the
presence of the electromagnetic field. In such study, regular
interior spacetime is matched smoothly at the pressure free
interface to the Reissner-Nordstrom exterior model. The
models generated are useful to describe charged relativistic
bodies with strong gravitational fields such as neutron stars.
Gravitational collapse of a spherically symmetric distribution
ofmatter to a point singularitymay be avoided in the presence
of electromagnetic field. In this situation, the gravitational
attraction is counterbalanced by the repulsive Columbian
force with the pressure gradient and, hence, charged fluids
have a tendency to resist the gravitational collapse. This
property persuades the researchers to work on charged
perfect fluid distribution. Bonnor [1] has shown that charged
dust solutions are expected to form a point like model of
electron when its radius shrinks to zero.The presence of elec-
tromagnetic field affects the value of redshifts, luminosities,
and maximum mass of a compact relativistic object (Ivanov
[2], Sharma et al. [3]). Many exact solutions which satisfy
the conditions for a physically acceptable charged relativistic

sphere have been given by Ivanov [2], Thirukkanesh and
Maharaj [4], and Gupta and Maurya [5], among others.
Detailed studies of Sharma et al. [6] in cold compact objects,
Sharma and Mukherjee [7] analysis of strange matter and
binary pulsars and Sharma and Mukherjee [8] analysis of
qark-diquark mixtures in equilibrium are of interest physi-
cally. Thomas et al. [9], Tikekar and Thomas [10], and Paul
and Tikekar [11] have shown that charged relativistic matter
is relevant in modeling core-envelope stellar system in which
the stellar core is an isotropic fluid surrounded by a layer of
anisotropic fluid.

Vaidya and Tikekar [12] proposed the geometry of the
spacelike hypersurfaces generated by 𝑡 = constant are of
3-spheroid to generate exact solutions since it provides a
clear geometrical interpretation: the models with spheroidal
geometries directly related to the physical situations. Tikekar
[13] found an exact solution for a particular spheroidal
geometry which could be used to model superdense neutron
stars of densities in the range of 1014 gcm−3; this solution has
been generalized byMaharaj and Leach [14].There have been
extensive studies on charged spheroidal stars by considering
a particular form for the electric field in recent years [15–23].
These charged spheroidal models contain uncharged neutron
stars in the relevant limit and are consequently relevant in
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the description of dense astrophysical objects. Therefore, the
study of charged fluid spheres in static spherically symmetric
spacetimes is important in relativistic astrophysics.

The objective of this paper is to generate new classes of
charged spheroidal solutions in terms of elementary function,
which may be used to describe the interior of a relativistic
compact sphere. In Section 2, the Einstein-Maxwell system
of equations is expressed for static spherically symmetric
spacetime. In Section 3, particular forms for one of the gravi-
tational potentials with spheroidal parameter and the electric
field intensity are chosen, which reduces the condition of
pressure isotropy to a second order linear differential equa-
tion in the remaining gravitational potential. In Section 4,
a class of solutions for a particular parameter value is first
obtained. In general, the solution is obtained in series form
using the method of Frobenius, and then two categories of
solutions in terms of elementarily functions are derived by
placing restrictions on the parameters. The physical features
are illustrated graphically, and numerical values of some
physical quantities are calculated for a particular example in
Section 5.

2. Field Equations

The gravitational field should be static and spherically sym-
metric to describe the internal structure of a charged dense
compact relativistic sphere.Therefore, the generic form of the
line element for describing such configuration is given by

𝑑𝑠
2
= −𝑒
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in Schwarzschild coordinates (𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙), where ](𝑟)
and 𝜆(𝑟) are arbitrary function of radial coordinate 𝑟. The
Einstein-Maxwell system of field equations, for themetric (1),
can be written in the form
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The energy density 𝜌 and the pressure𝑝 aremeasured relative
to the commoving fluid 4-velocity 𝑢𝑎 = 𝑒−]𝛿𝑎

0
and primes

denote differentiation with respect to the radial coordinate
𝑟. The quantities 𝐸 and 𝜎 denote the electric field intensity
and the proper charge density, respectively. In the system
(2a)–(2d), the units used are such that the coupling constant
8𝜋𝐺/𝑐

4
= 1 and the speed of light 𝑐 = 1. This system of

equations determines the behaviour of the gravitational field
for a charged perfect fluid source. When 𝐸 = 0 the Einstein-
Maxwell system (2a)–(2d) reduces to the uncharged Einstein
system.

3. Choosing Gravitational Potential and
Electric Field Intensity

The aim is to seek solutions to the Einstein-Maxwell system
(2a)–(2d) by making explicit choices for the gravitational
potential 𝑒2𝜆(𝑟) and electric field intensity 𝐸 on physical
grounds. The system (2a)–(2d) comprises four equation with
six unknowns 𝜆, ], 𝜌, 𝑝, 𝐸, and 𝜎 so that it is necessary to
choose two of the variables to integrate the system. In this
treatment, 𝜆 and 𝐸 are specified. A particular choice for 𝜆 is
made such that
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where 𝐾 and 𝑅 are real constants. The above form has been
used previously by Tikekar [13] and Maharaj and Leach [14]
to study the behaviour of uncharged superdense stars. Note
that the choice (3) for the gravitational potential𝜆 restricts the
geometry of the 3-dimensional hypersurfaces 𝑡 = constant to
be spheroidal for𝐾 ̸= 0 and spherical for𝐾 = 0.

Eliminating 𝑝 from (2b) and (2c), for the particular form
(3), one obtain the condition of pressure isotropy:
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The transformation
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(5)

reduces the condition (4) for pressure isotropy to a conve-
nient form
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in terms of the new variables 𝜓 and 𝑥, where dots denote
differentiation with respect to 𝑥.

In terms of new variable 𝑥, the Einstein-Maxwell system
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for the choice (3). Note that in (7a)–(7c), 𝜌, 𝑝, and 𝜎 are
defined in terms of 𝐸. Equation (6) may be integrable if a
particular choice of the electric field intensity 𝐸 is made. For
mathematical convenient one may take
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where 𝛽 is a constant which is different from the choice of
Komathiraj andMaharaj [15]. On substituting (8) into (6), we
obtain a second order linear differential equation

(1 − 𝐾 + 𝐾𝑥
2
) 𝜓̈ − 𝐾 (1 + 2𝛽) 𝑥𝜓̇ + 𝐾 (𝐾 − 1) 𝜓 = 0 (9)

in 𝜓. It is expected that investigation of (9) will produce
physically reasonable models of charged stars since 𝛽 = 0
yieldsmodels found previously byMaharaj and Leach [14] for
neutron stars which contain Tikekar [13] superdense stars as
special case.

4. Solution

It is clear that the solution of the Einstein-Maxwell system
depends on the integrability of (9). One may consider the
following two cases.

4.1. Particular Case. When 𝛽 = −1, (9) becomes
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in terms of the variable 𝑥.Thus, a class of exact solution to the
Einstein-Maxwell system is generated for all positive value of
𝐾. Solution (14) is given in simple formwhich is an advantage
for physical analysis.

4.2. General Case. Note that (9) can be transformed to a
hypergeometric equation.However, it is impossible to express
the solutions in terms of elementary function for all 𝐾.
In general, the solution will be given in terms of special
functions. Solutions in a simple form are important for a
detailed physical analysis. Hence, first I attempt to obtain a
general solution of (9) in a series form using the method
of Frobenius and then demonstrate the possibility to extract
solutions in terms of polynomials and algebraic functions by
imposing restrictions on the parameters.

4.2.1. Series Solution. Since 𝑥 = 0 is a regular point of
the differential equation (9), we can apply the method of
Frobenius about 𝑥 = 0 to obtain a series solution. Thus, we
assume that
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For the validity of (16), we must have
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ing the structure of the solution.The difference equation (17c)
consists of variable, rational coefficients.
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Hence, the difference equation (17c) has been solved and all
nonzero coefficients are expressible in terms of the leading
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1
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solution of (9) for the choice (15) is given by
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are linearly independent solutions of (9).
It is interesting to observe that when 𝐾 = 0 the series

solution (21) reduces to a simple form

𝜓 (𝑥) = 𝑎
0
+ 𝑎
1
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In this case, the electric field intensity 𝐸 vanishes and there is
no charge.

Note that when 𝑎
0
= 0 and 𝑎
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= 1, the line element (1)

takes the form
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The above metric corresponds to the familiar isotropic
uncharged de Sitter model.

When 𝑎
1
= 0, the line element (1) takes the particular

form
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The above metric corresponds to the well-known isotropic
uncharged Einstein model.

4.2.2. Terminating Series. The general solution (21) can be
expressed in terms of polynomial and algebraic function
for restricted values of the parameter 𝐾. This will happen
because series (22a) and (22b) terminate for restricted values
of 𝐾. Using this feature, it is possible to generate two sets of
solutions in terms of elementary functions by determining
specific restrictions on 𝐾, as demonstrated below. For sim-
plicity, the difference equation (17c) is used instead of the
series (22a) and (22b) to obtain the solutions in terms of
elementary functions.
First Solution. Firstly consider the polynomials of even
degree. If we set

𝑖 = 2 (𝑗 − 1) , (26a)

𝐾 = 2 − (2𝑛 − 1)
2
+ 4𝑛𝛽 (26b)
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then for a fixed integer 𝑛 > 1, (17c) become
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2𝑗 (2𝑗 + 1)
𝑎
2𝑗−1
, (31)

where 𝜇 = 4 − 4/[(2𝑛 + 1)(2𝑛 − 1 − 2𝛽)]. Observe that
(31) implies 𝑎

2(𝑛+1)+1
= 0. Consequently, the remaining

coefficients 𝑎
2(𝑛+2)+1

, 𝑎
2(𝑛+3)+1

, 𝑎
2(𝑛+4)+1

, . . . vanish and (31) has
the solution

𝑎
2𝑗+1

= (−𝜇)
𝑗 (𝑛 − 𝛽 + 𝑗 − 1)! (𝑛 − 1)!

(2𝑗 + 1)! (𝑛 − 𝛽 − 1)! (𝑛 − 𝑗)!
, 0 ≤ 𝑗 ≤ 𝑛,

(32)

where I have set 𝑎
1
= 1/𝑛. Therefore, from (15) and (32), we

can express the polynomial in odd powers of 𝑥 as

𝑔
1
(𝑥) =

𝑛

∑

𝑗=0

(−𝜇)
𝑗 (𝑛 − 𝛽 + 𝑗 − 1)! (𝑛 − 1)!

(2𝑗 + 1)! (𝑛 − 𝛽 − 1)! (𝑛 − 𝑗)!
𝑥
2𝑗+1 (33)

for𝐾 = 2[1 − 2𝑛2 + (2𝑛 + 1)𝛽].
Polynomial (29) and (33) comprise the first solution of (9)

for appropriate values of 𝐾.
Second Solution. Assume the second solution of (9) to be of
the form

𝜓 (𝑥) = 𝑢 (𝑥) (1 − 𝐾 + 𝐾𝑥
2
)
(3/2)+𝛽

, (34)

where 𝑢(𝑥) is an arbitrary function. Substituting 𝜓 in (9) we
obtain

(1 − 𝐾 + 𝐾𝑥
2
)
𝑑
2
𝑢

𝑑𝑥
2
+ 𝐾 (5 + 2𝛽) 𝑥

𝑑𝑢

𝑑𝑥

+ 𝐾 (𝐾 + 2 + 2𝛽) 𝑢 = 0,

(35)

which is a linear differential equation in 𝑢(𝑥).

Observe that (9) and (35) are of the same type. As in
Section 4.2.1, we can first find a general series solution and
then two classes of polynomial solution (in even powers of 𝑥
and in odd powers of 𝑥) for (35) using the above technique.
Hence, I present the final formof the solution: the polynomial
in even powers of 𝑥 leads to the expression

𝑢 (𝑥) =

𝑛−𝛽−1

∑

𝑗=0

(−𝜇)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 1)!

(2𝑗)! (𝑛 − 1)! (𝑛 − 𝛽 − 𝑗 − 1)!
𝑥
2𝑗 (36)

for 𝐾 = 2[1 − 2𝑛2 + (2𝑛 + 1)𝛽], where the real constant 𝛽 is
restricted as integer such that 𝛽 ≤ 𝑛 − 1; the polynomial in
odd powers of 𝑥 leads to the result

𝑢 (𝑥) =

𝑛−𝛽−2

∑

𝑗=0

(−𝛾)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 2)!

(2𝑗 + 1)! (𝑛 − 2)! (𝑛 − 𝛽 − 𝑗 − 2)!
𝑥
2𝑗+1

(37)

for 𝐾 = 2 − (2𝑛 − 1)
2
+ 4𝑛𝛽, where the real constant 𝛽 is

restricted as integer such that 𝛽 ≤ 𝑛 − 2 in this case.
Hence, the solutions to (9) becomes:

𝑔
2
(𝑥) = (1 − 𝐾 + 𝐾𝑥

2
)
(3/2)+𝛽

×

𝑛−𝛽−1

∑

𝑗=0

(−𝜇)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 1)!

(2𝑗)! (𝑛 − 1)! (𝑛 − 𝛽 − 𝑗 − 1)!
𝑥
2𝑗

(38)

for𝐾 = 2[1−2𝑛2 + (2𝑛+1)𝛽], where 𝛽 is an integer such that
𝛽 ≤ 𝑛 − 1;

𝑓
2
(𝑥) = (1 − 𝐾 + 𝐾𝑥

2
)
(3/2)+𝛽

×

𝑛−𝛽−2

∑

𝑗=0

(−𝛾)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 2)!

(2𝑗 + 1)! (𝑛 − 2)! (𝑛 − 𝛽 − 𝑗 − 2)!
𝑥
2𝑗+1

(39)

for 𝐾 = 2 − (2𝑛 − 1)2 + 4𝑛𝛽, where 𝛽 is an integer such that
𝛽 ≤ 𝑛 − 2.

The algebraic functions (38) and (39) comprise the second
solution of (9) for appropriate values of𝐾.
Exact Solution. The solutions generated in Section 4.2.2 can
be expressed in terms of two classes of elementary functions.
The first category of solution for 𝜓(𝑥) = 𝑓(𝑥) is

𝑓 (𝑥) = 𝐴𝑓
1
(𝑥) + 𝐵𝑓

2
(𝑥)

= 𝐴

𝑛

∑

𝑗=0

(−𝛾)
𝑗 (𝑛 − 𝛽 + 𝑗 − 2)! (𝑛 − 1)!

(2𝑗)! (𝑛 − 𝛽 − 1)! (𝑛 − 𝑗)!
𝑥
2𝑗

+ 𝐵(1 − 𝐾 + 𝐾𝑥
2
)
(3/2)+𝛽

×

𝑛−𝛽−2

∑

𝑗=0

(−𝛾)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 2)!

(2𝑗 + 1)! (𝑛 − 2)! (𝑛 − 𝛽 − 𝑗 − 2)!
𝑥
2𝑗+1

(40)
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for the values

𝛾 = 4 −
1

𝑛 (𝑛 − 1 − 𝛽)
, (41a)

𝐾 = 2 − (2𝑛 − 1)
2
+ 4𝑛𝛽, where 𝛽 ≤ 𝑛 − 2. (41b)

The second category of solution for 𝜓(𝑥) = 𝑔(𝑥) is

𝑔 (𝑥) = 𝐴𝑔
1
(𝑥) + 𝐵𝑔

2
(𝑥)

= 𝐴

𝑛

∑

𝑗=0

(−𝜇)
𝑗 (𝑛 − 𝛽 + 𝑗 − 1)! (𝑛 − 1)!

(2𝑗 + 1)! (𝑛 − 𝛽 − 1)! (𝑛 − 𝑗)!
𝑥
2𝑗+1

+ 𝐵(1 − 𝐾 + 𝐾𝑥
2
)
(3/2)+𝛽

×

𝑛−𝛽−1

∑

𝑗=0

(−𝜇)
𝑗 (𝑛 + 𝑗)! (𝑛 − 𝛽 − 1)!

(2𝑗)! (𝑛 − 1)! (𝑛 − 𝛽 − 𝑗 − 1)!
𝑥
2𝑗

(42)

for the values

𝜇 = 4 −
4

(2𝑛 + 1) (2𝑛 − 1 − 2𝛽)
, (43a)

𝐾 = 2 [1 − 2𝑛
2
+ (2𝑛 + 1) 𝛽] , where 𝛽 ≤ 𝑛 − 1. (43b)

In (40) and (42), 𝐴 and 𝐵 are arbitrary constants.
The solutions (40) and (42) are given completely in terms

of elementary functions: this has the advantage of facilitating
the analysis of physical feature of the stellar interior. These
solutions are applicable to a charged superdense star with
spheroidal geometry. Note that this treatment has combined
both charged and neutral cases for a relativistic star: by setting
𝛽 = 0 one obtain the solution for neutral case directly.

From these general class of solutions (40) and (42), it is
possible to regain particular solutions found in the past. For
example, the solutions (40) and (42) reduce to the uncharged
models of Maharaj and Leach [14] when 𝛽 = 0 which contain
the Tikekar [13] superdense neutron star model for 𝐾 = −7.
Other explicit functional forms for 𝜓 are obtainable which
could be useful to study dense stars. For example, if we set
𝛽 = 1 and𝐾 = −4 (𝑛 = 2) then (42) becomes

𝜓 = 𝐴𝑥 [
1

2
−
8

15
𝑥
2
+
64

375
𝑥
4
] + 2𝐵(5 − 4𝑥

2
)
5/2

. (44)

For this case, the line element takes a simple form

𝑑𝑠
2
= −[

[

𝐴

750

√1 −
𝑟
2

𝑅
2

× [103 + 144
𝑟
2

𝑅
2
+ 128

𝑟
4

𝑅
4
]

+2𝐵(1 + 4
𝑟
2

𝑅
2
)]

]

2

𝑑𝑡
2
+
1 + 4𝑟

2
/𝑅
2

1 − 𝑟
2
/𝑅
2
𝑑𝑟
2

+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) ,

(45)

in terms of the original variable 𝑟.

5. Physical Analysis

It is easy to observe from the solutions (40) and (42) that
the spheroidal parameter increases with 𝛽 so that the electric
field intensity affect the spheroidal parameter. For vanishing
of pressure at the boundary 𝑟 = 𝑏 in the solutions (14), (40),
and (42), we require 𝑝(𝑏) = 0, that gives the condition

√1 −
𝑏
2

𝑅
2
(

(𝛽 + 2)𝐾 (𝑏
2
/𝑅
2
)

[1 − 𝐾 (𝑏
2
/𝑅
2
)]
)

× [
𝜓̇

𝜓
]

𝑥=√1−(𝑏
2
/𝑅
2
)

+ 𝐾 − 1 = 0.

(46)

The generated interior metric matches smoothly with the
exterior Reissnar-Nordstrom metric:

𝑑𝑠
2
= − (1 −

2𝑚

𝑟
+
𝑞
2

𝑟
2
)𝑑𝑡
2
+ (1 −

2𝑚

𝑟
+
𝑞
2

𝑟
2
)

−1

𝑑𝑟
2

+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2)

(47)

across the boundary 𝑟 = 𝑏, where 𝑚 and 𝑞 are the total
mass and charge of the sphere. This generate the relationship
between 𝑏, 𝛽, 𝐾, 𝑅 and the arbitrary constants involved in
the solutions 𝜓 as follows:

(1 −
2𝑚

𝑟
+
𝑞
2

𝑟
2
) = [𝜓

2
]
𝑥=√1−(𝑏

2
/𝑅
2
)
, (48a)

(1 −
2𝑚

𝑟
+
𝑞
2

𝑟
2
)

−1

=

1 − 𝐾 (𝑏
2
/𝑅
2
)

1 − (𝑏
2
/𝑅
2
)
. (48b)

The conditions (46) and (48a)-(48b) place the restrictions
on the parameters involved in these equations. However,
there are sufficient free parameters to satisfy the necessary
condition that arise for the model under investigation.

Now, we shall show that the obtained models are physi-
cally reasonable by plotting for a particular solution (45) as
illustrated in Figures 1–7 by assuming the parameter values
𝐴 = −10, 𝐵 = −1, and 𝑅 = 16 km in the interval 0 ≤ 𝑟 ≤ 1,
where 𝑟 is in km. The software package Mathematica was
utilized to generate the plots for 𝑒2], 𝑒2𝜆, 𝜌, 𝑝, 𝐸2, 𝑑𝑝/𝑑𝜌,
and 𝑝 versus 𝜌. Gravitational potentials are plotted in Figures
1 and 2 which are nonsingular at the center and increasing
from center to the boundary. The behaviour of the energy
density is plotted in Figure 3, which is positive andmonoton-
ically decreasing towards the boundary of the stellar object.
The behaviour of matter pressure 𝑝 is plotted in Figure 4,
which is regular, monotonically decreasing throughout the
stellar interior. The behaviour of the electric field intensity is
described in Figure 5, which is continuous and well behaved.
The derivative 𝑑𝑝/𝑑𝜌 is plotted in Figure 6, which is 0 ≤
𝑑𝑝/𝑑𝜌 ≤ 1 throughout the interior of the stellar object.
Therefore, the speed of the sound is less than the speed of the
light and causality is maintained. The pressure 𝑝 verses the
density 𝜌 is plotted in Figure 7, and this looks like a straight
line so that the equation of state approximate to a linear
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Figure 2: Gravitational potential 𝑒2𝜆.

relationship between 𝑝 and 𝜌. Thus, we have demonstrated
that the particular solution satisfies the requirements for a
physically reasonable stellar interior in the context of general
relativity.

Numerical values for the physical quantities for the
metric (45) for various radius are given in Table 1, where
the constant of integration 𝐴 = 0 is assumed for simplicity.
The radius of the star 𝑏 is chosen to be compared with
experimental values reported for realistic stars. In all cases,
it is noted that at the surface the pressure 𝑝(𝑏) = 0 (up
to 8 decimal places), the density 𝜌(𝑏) > 0 and the charge
𝑞(𝑏) > 0; at the centre the pressure 𝑝(0) > 0 and the
density 𝜌(0) > 0. The mass of the sphere of radius 7.07 km
obtained in Table 1 is comparable with the experimentally
determined value 1.44𝑀

⊙
of the strange star SAX J1808.4-

3658(SS1) having the same radius [24]. Moreover, similar
value of mass was theoretically obtained for SAX J1808.4-
3658(SS1) by Dey et al. [25], Sharma and Maharaj [26] and
Tikekar and Jotania [27]. A similar mass value for the SAX
J1808.4-3658(SS2) was reported by Tikekar and Jotania [27].
Experimental observations suggest a star model for Her. X-
1, which is estimated to have a mass between 1.1–1.8𝑀

⊙

and the radius between 6–7.7 km [28]. It is noted that the
mass obtained for radius 7.7 km and 𝑅 = 9.445343 km
in Table 1 corroborates with this experimentally estimated
result for Her. X-1. The mass obtained for 4U 1820–30 is

11.6

11.5

11.4

11.3

r (km)
0.2 0.4 0.6 0.8 1.0

𝜌
(𝜌

nu
)

Figure 3: Energy density in terms of nuclear density 𝜌
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Figure 5: Electric field intensity.

similar to the value reported in the past [27]. However, for
this particular example of parameter values considered in
Table 1, the casuality condition is not satisfied as for the results
obtained by Kumar and Gupta[23] and the argument given
[23] for this scenario is notable.

6. Conclusion

New classes of solutions are generated to the Einstein-Max-
well system by assuming that the hypersurface 𝑡 = constant
is spheroidal. For a particular choice of electric field intensity
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Table 1: b, radius of the star; 𝑝(0), central pressure; 𝜌(𝑏), surface density; 𝜌(0), central density; 𝑞(𝑏), surface charge.

Strange star
candidate 𝑅 (km) 𝑏 (km) 𝑝(0) (km−2) 𝜌(𝑏) (km−2) 𝜌(0) (km−2) 𝑞(𝑏) (km) Mass (𝑀

⊙
)

SAX J1808.4-3658
(SS1) 8.672542 7.07 0.465 0.023 0.199 3.478 1.5295

SAX J1808.4-3658
(SS2) 7.789341 6.35 0.576 0.016 0.247 3.883 1.3739

Her. X-1 9.445343 7.7 0.518 0.026 0.222 3.296 1.6658
4U 1820-30 12.266679 10 0.233 0.019 0.099 4.920 2.1633
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Figure 6: The derivative 𝑑𝑝/𝑑𝜌.
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Figure 7: Pressure versus density.

(𝛽 = −1), a class of solution is found for all positive spheroidal
parameter values 𝐾. In general, a series solution is generated
to the Einstein-Maxwell system and is demonstrated that two
classes of solutions (40) and (42) can be extracted in terms
of elementary functions. These class of solutions contain
de Sitter model, Einstein universe, Tikekar superdense star
[13] and Maharaj and Leach neutron star model [14] in
the limit of vanishing electric field intensity. For particular
parameter values, it is shown geometrically that the model
satisfy the necessary physical requirements in the description
of a compact object with isotropic matter distribution. Also,
themass values obtained are comparable with experimentally
estimated values of realistic stars such as SAX J1808.4–
3658(SS1), SAX J1808.4–3658(SS1), Her. X-1, and 4U 1820–30.
We believe that the general class of exact solutions found in
this paper may assist in more detailed studies of relativistic
compact objects.
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