

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (Aug./Sep., 2016)

PM 101 - FOUNDATION OF MATHEMATICS

Proper & Repeat

nswer all questions

Time: Three hours

1. (a) Using truth tables, show that $p \lor q \equiv \sim p \longrightarrow q$.

Hence rewrite the following compound statements using only the connectives \wedge and \sim :

i.
$$(\sim p \lor q) \longrightarrow (r \lor \sim q);$$

ii.
$$(p \longrightarrow r) \longleftrightarrow (q \longrightarrow r)$$
.

(b) Prove the following equivalences using the laws of logic:

i.
$$\sim [p \lor (\sim p \land q)] \equiv \sim p \land \sim q;$$

ii.
$$\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv \sim p$$
,

where p and q are statements.

(c) Using the valid argument forms, show that the following argument is valid:

"If you send me an e-mail message, then I will finish writing the program. If you do not send me an e-mail message, then I will go to sleep early. If I go to sleep early, then I will wake up feeling refreshed. Therefore, If I do not finish writing the program, then I will wake up feeling refreshed."

2. (a) For any sets A and B, prove that $A \triangle B = (A \cup B) \setminus (A \cap B)$. Hence, show that:

i.
$$A \cup B = (A \triangle B) \cup (A \cap B)$$
,

ii.
$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$
.

- (b) For any sets A, B and C, prove that:
 - i. $A \times (B \cap C) = (A \times B) \cap (A \times C)$,
 - ii. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
- 3. (a) Let R be a relation defined on $\mathbb{C} \setminus \{0\}$ by $z_1Rz_2 \iff z_1\bar{z_1}(z_2 + \bar{z_2}) = \bar{z_1}$ where \mathbb{C} denotes the set of all complex numbers. Prove that R is an

relation.

If a is a non-zero real number, show that R-class of a is a circle with $\left(\frac{1}{2}a,0\right)$ and radius $\frac{1}{2}a$.

- (b) i. Prove that every partially ordered set has at most one last elementii. Show that last element of every partially ordered set is a maximal.Is the converse true? Justify your answer.
- 4. (a) Define the following terms:
 - i. injective mapping,
 - ii. surjective mapping,
 - iii. inverse mapping.
 - (b) The functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are defined by

$$f(x) = \begin{cases} 1 - x, & \text{if } x \ge 0; \\ x^2, & \text{if } x < 0; \end{cases} \quad \text{and } g(x) = \begin{cases} x, & \text{if } x \ge 0; \\ x - 1, & \text{if } x < 0; \end{cases}$$

Find the formula for $f \circ g$

Show that $f \circ g$ is a bijection and give a formula for $(f \circ g)^{-1}$.

- 5. Let $f: X \to Y$ be a mapping and A, B subsets of X. Prove the following:
 - (a) $f(A \cup B) = f(A) \cup f(B)$;
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$;

b are relatively prime..

- (c) Is $f(A) \cap f(B) \subseteq f(A \cap B)$ in general? Justify your answer;
- (d) f is surjective iff $Y \setminus f(A) \subseteq f(X \setminus A)$.
- 6. (a) Let a, b and c be integers. If a | b and a | c then prove that a | (bx+integers x and y.
 Hence, show that the greatest common divisor of a + 2b and 2a + b is left.
 - (b) Using the Euclidean algorithm find integers x and y satisfying
 - $\gcd(341,527)=341x+527y.$ (c) Find all the integer solutions of the Diophantine equation 21x+7y=1