

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE(2014/2015)

FIRST SEMESTER (Aug./Sept., 2016)

AM 106 - TENSOR CALCULUS

Proper & Repeat

er all question

Time: One hour

Define the Covariant tensor A_{pq} and the Contravariant tensor A^{pq} .

Express the relationship between the following associated tensors:

- i. A^{ijk} and A_{pqr} ;
- ii. A_{jl}^{k} and A^{qkr} .

Let A_p , B_r^{qs} be an arbitrary tensors. Show that if $A^p B_r^{qs} C(p, q, r, s, s)$ is an invariant then C(p, q, r, s) is a mixed tensor. What is its rank?

Find g and g^{jk} corresponding to the line element

$$ds^{2} = 2(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} + 4dx^{1}dx^{2} - 2dx^{1}dx^{3}.$$

- (a) Define the following:
 - Christofell's symbols of the first and second kind;
 - ii. Geodesic.

Explain the terms "Covariant derivative" as applied to the tensor AP,

(b) With the usual notations, prove the following:

i.
$$[pq, r] = g_{rs}\Gamma_{pq}^s$$
;

i.
$$[pq, r] = g_{rs}\Gamma_{pq}^s$$
;
ii. $\frac{\partial g^{pq}}{\partial x^m} + g^{pn}\Gamma_{mn}^q + g^{qn}\Gamma_{mn}^p = 0$.

Deduce that the covariant derivatives of g_{jk} , g^{jk} and δ_k^j are zero.

(c) Show that the non-vanishing Christofel's symbols of the second kind in ch coordinate (ρ, ϕ, z) are given by

$$\Gamma^1_{22} = -\rho, \quad \Gamma^2_{21} = \frac{1}{\rho}, \quad \Gamma^2_{12} = \frac{1}{\rho},$$

where $x^{1} = \rho$, $x^{2} = \phi$, $x^{3} = z$.