EASTERN UNIVERSITY, SRI LANKA ## DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE(2014/2015) FIRST SEMESTER (Aug./Sept., 2016) ## AM 106 - TENSOR CALCULUS Proper & Repeat er all question Time: One hour Define the Covariant tensor A_{pq} and the Contravariant tensor A^{pq} . Express the relationship between the following associated tensors: - i. A^{ijk} and A_{pqr} ; - ii. A_{jl}^{k} and A^{qkr} . Let A_p , B_r^{qs} be an arbitrary tensors. Show that if $A^p B_r^{qs} C(p, q, r, s, s)$ is an invariant then C(p, q, r, s) is a mixed tensor. What is its rank? Find g and g^{jk} corresponding to the line element $$ds^{2} = 2(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} + 4dx^{1}dx^{2} - 2dx^{1}dx^{3}.$$ - (a) Define the following: - Christofell's symbols of the first and second kind; - ii. Geodesic. Explain the terms "Covariant derivative" as applied to the tensor AP, (b) With the usual notations, prove the following: i. $$[pq, r] = g_{rs}\Gamma_{pq}^s$$; i. $$[pq, r] = g_{rs}\Gamma_{pq}^s$$; ii. $\frac{\partial g^{pq}}{\partial x^m} + g^{pn}\Gamma_{mn}^q + g^{qn}\Gamma_{mn}^p = 0$. Deduce that the covariant derivatives of g_{jk} , g^{jk} and δ_k^j are zero. (c) Show that the non-vanishing Christofel's symbols of the second kind in ch coordinate (ρ, ϕ, z) are given by $$\Gamma^1_{22} = -\rho, \quad \Gamma^2_{21} = \frac{1}{\rho}, \quad \Gamma^2_{12} = \frac{1}{\rho},$$ where $x^{1} = \rho$, $x^{2} = \phi$, $x^{3} = z$.