

Eastern University, Sri Lanka

First Year First Semester Examination in Science 2013/2014 (October 2015)

CH 102 Introduction to Electrochemistry and Thermodynamics

Answer all questions

Time: 01 hour

Gas constant (R) = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

2.303 RT/F = 0.0591 V

1.

a) i) Write the mathematical expression for total work done of a gas

(05 marks)

ii) Derive the equation for the work of reversible isothermal expansion of a Vander der Waals gas from V_1 to V_2

(25 marks)

iii) One mole of CH₄ expands reversibly from 1 to 50 liter at 25 0 C. Calculate the work in joules assuming the gas obeys the Vander der Waals equation. For CH₄ $a = 1.36 \, l^{2}$ atm mol⁻² and b = 0.

(20 marks)

b) i) Using the combination of first and second laws of thermodynamics, show that the entropy change (ΔS) on heating of 'n' moles of substance reversibly from temperature T_1 to T_2 at constant volume is

$$\Delta S = C_v \ln \frac{T_2}{T_1}$$
, assume C_v is independent of temperature.

(20 marks)

ii) The heat capacity of oxygen at constant volume is given by the empirical equation

$$C_v = \alpha (T^2 - 2) + \beta T + \gamma$$

Where α , β and γ are constants. Show that the entropy change (ΔS) of oxygen when it is heated from $T_1 to T_2$ is

$$\Delta S = \frac{\alpha}{2} (T_2^2 - T_1^2) + \beta (T_2 - T_1) + (\gamma - 2\alpha) \ln \frac{T_2}{T_1}$$

(30 marks)

Contd.....

 a) i) Write the Clasius - Clapeyron equation and hence show that the integrated for the equation is

$$\ln\left(\frac{P_1}{P_2}\right) = \frac{\Delta H_{Vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

(15 marks

ii) Naphthalene ($C_{10}H_8$) melts at 80.2° C. If the vapour pressure of the liquid is 101 at 85.8° C and 40 Torr at 119.3° C, use this equation to calculate the enthalp vaporization (ΔH_{Vap})

(20 mark)

b) Write the Nernst equation and explain the terms involved in it.

(05 mark

c) Reduction half-reactions at 25 °C, are given below

$$Cd^{2+}(aq) + 2e \rightarrow Cd(s)$$
 $E^{\theta} = -0.403 \text{ V}$
 $Pb^{2+}(aq) + 2e \rightarrow Pb(s)$ $E^{\theta} = -0.126 \text{ V}$

- i) Write the cell reaction
- ii) Represent the electrochemical cell
- iii) Calculate the standard cell potential
- iv) Calculate the cell potential of the cell, where $[Cd^{2+}(aq)] = 0.00$ and $[Pb^{2+}(aq)] = 0.2$ M.

(45 mark

d) Predict whether Zinc and Silver react with 1M H₂SO₄ to give out hydrogen gas on Given that the standard reduction potentials of Zinc and Silver are -0.76 V and 0.8 respectively.

(15 marks
