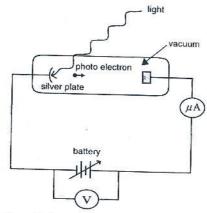


EASTERN UNIVERSITY, SRI LANKA O MAR

FIRST YEAR FIRST SEMESTER EXAMINATION IN SCIENCE-2013/2014

(August 2015)

CH 101: PERIODICITY AND BONDING


(Repeat)

Answer all questions

Time: one hour

Plank's constant (h) =6.63x10⁻³⁴ Js, Velocity of light(C) = $3x10^8$ ms⁻¹, Mass of electron=9.1 x10⁻³¹ kg, ϵ_0 = 8.854 x 10^{12} C²N²m⁻², ϵ_0 = 1.602 x 10^{-19} C, 1eV = 1.6 X 10^{-19} J

1. The apparatus shown below was set up to investigate the photoelectric effect.

Using this apparatus it is found that light of wavelength 254 nm ejects photoelectrons from a silver plate. The work function of the silver surface is 4.7 eV.

- a) Define the terms work function and photoelectric effect.
- b) Calculate the energy, in eV, of a single photon of light of wavelength 254 nm.
- c) What is the kinetic energy, in eV, of the fastest moving photoelectrons ejected by light of 254 nm?
- i) What does Heisenberg's uncertainty principle say about an electron in an atom?
 - ii) What are the orbitals associated with the principal quantum number n = 3?

(100 marks)

Cont ...

- 2. a) What are the postulates of Bohr theory?
 - b) Identify the symbols in the following equation for Bohr theory.

$$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$

c) Calculate the ionization energy (Kjmol⁻¹) of hydrogen atom using the following equation for Bohr theory.

$$E = E_i - E_f = R_{\rm E} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

where R_E = 2.178 X 10-18 J.

- d) i) Draw a valence molecular orbital diagram for C₂. Your diagram must include labeled atomic and molecular orbitals and include electrons in the appropriate orbitals.
 - ii) Clearly label the HOMO and LUMO in the above orbital diagram for C2
 - iii) Calculate the bond order for C2.
 - iv) Find the Magnetic character of the species; C_2 , C_2^+ and C_2^-
- e) Use the VSEPR model to predict the shape of the following molecules
 - i) Fluoromethane
 - ii) Sulfur hexafluoride

(100 marks