

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2012/2013

SECOND SEMESTER (Aug./Sept., 2015)

PM 102 - REAL ANALYSIS

(Proper & Repeat)

Answer all Questions

Time: Three hours

- Q1. (a) i. Define the terms supremum and infimum of a non-empty subset of \mathbb{R} .
 - ii. State the *completeness* property of \mathbb{R} , and use it to prove that every non-empty bounded below subset of \mathbb{R} has an infimum.
 - (b) Let S be non-empty subset of \mathbb{R} which is bounded above and $a \in \mathbb{R}$. Let the set a + S be defined as

$$a+S=\{a+x:x\in S\}.$$

Prove that $\sup(a+S) = a + \sup S$.

(c) Find the supremum and infimum of the set

$$S = \left\{ \frac{2}{3} \left(1 - \frac{1}{10^n} \right) : \ n \in \mathbb{N} \right\}.$$

(a) State what it means for a sequence of real numbers (x_n) to converges to a limit

Use the definition of convergence of sequence of real numbers to show that

$$\lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = 0.$$

- (b) Prove that every increasing sequence, which is bounded above, is convergent. Deduce that every decreasing sequence, which is bounded below, is convergent
- (c) Let the sequence (x_n) be defined inductively by

$$x_1 = \frac{3}{2}$$
 and $x_{n+1} = 3 - \frac{2}{x_n}$ for all $n \in \mathbb{N}$.

- i. Show that (x_n) is monotonic and bounded.
- ii. Find its limit.
- (a) Define the following terms: Q3.
 - i. a *subsequence* of a sequence;
 - ii. Cauchy sequence.
 - (b) If a real sequence (x_n) is such that $x_n \longrightarrow l \in \mathbb{R}$, then every subsequence of (x_n) has the same limit l.

Use this result to prove that

$$\lim_{n \to \infty} a^n = 0 \quad \text{if} \quad 0 < a < 1.$$

i. Prove that $\left(\frac{1}{n^2}\right)$ is a Cauchy sequence.

ii. Prove that every Cauchy sequence is bounded.

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Explain what is meant by the function f has a limit $l(\in \mathbb{R})$ at a point $a(\in \mathbb{R})$.
 - (b) If $\lim_{x \to a} f(x) = l$, then show that $\lim_{x \to a} |f(x)| = |l|$. Is the converse true? Justiff your answer.

- (c) i. Let $A \subseteq \mathbb{R}$ and $f: A \longrightarrow \mathbb{R}$ be a function. Prove that $\lim_{x \longrightarrow a} f(x) = l$ if and only if for every sequence (x_n) in A with $x_n \longrightarrow a$ as $n \longrightarrow \infty$ such that $x_n \neq a$ for all $n \in \mathbb{N}$, we have $f(x_n) \longrightarrow l$ as $n \longrightarrow \infty$.
 - ii. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by f(x) = 1/x for all $x \neq 0$. Show that $\lim_{x \to 0} f(x)$ does not exist in \mathbb{R} .
- Q5. (a) Define what it means to say that a real-valued function f is continuous at a point a in its domain.

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0; \\ 1 & \text{if } x = 0. \end{cases}$$

Prove that, f is continuous at x = 0.

- (b) Show that, if f is continuous at a and f(a) > 0 then there exists some $\delta > 0$ such that f(x) > f(a)/2 for all x satisfying $|x a| < \delta$.
- (c) Let $f: A \to \mathbb{R}$ be a function and let $c \in A(\subseteq \mathbb{R})$. Show that the following conditions are equivalent:
 - i. f is continuous at c;
 - ii. If (x_n) is a sequence in A such that (x_n) converges to c, then $\lim_{n\to\infty} f(x_n) = f(c)$.
- Q6. (a) i. Define what it means to say that the real-valued function f is differentiable at a point a in its domain.
 - ii. Prove that every differentiable function is continuous. Is the converse true?

 Justify your answer.
 - (b) State the Mean Value Theorem, and use it to prove

$$x < \sin^{-1} x < \frac{x}{\sqrt{1 - x^2}}$$
, for all $x \in (0, 1)$.

$$g'(x) \neq 0$$
 for all $x \in (a, b)$. Prove that there exists $c \in (a, b)$ such that
$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

If f(d) = g(d) = 0 for some $d \in (a, b)$ deduce that

$$\lim_{x \to d} \frac{f(x)}{g(x)} = \lim_{x \to d} \frac{f'(x)}{g'(x)}.$$