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B 4 a) Define what is meant by saying that a series of real numbers E @y, 18 COT-
=1
vergent.
Determine the convergence of the following series, and find the sum of each
of the series, if it exists:
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(State, without proof, any test(s) that you may use.)
[40 marks]
(b) Show that the following series converges
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[20 marks]
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(¢) State Abel’s partial summation formula.
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suppose that the sequence of partial sums of the series 2 a, 18 bounded,
n=1

and (b,) is a sequence of bounded variation converges to 0. Prove that the
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series % b, converges.
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Hence prove that the following series
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where 7 # 2kw, k=0.1,2,---, 15 convergent.
(40 marks|
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Let Z (ty, and Z b,, be two series of non-negative real numbers such that
n=1 n=1
i. a, < m by for all n € N and for some positive real number m, and
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ii. ? b, converges.
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Show that the series ) ,, COLTVOrEOs.
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By using the above result, determine whether the following series converges

or diverges
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(You may assume, without proof, the analog of the above result for diver-
gence.)
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State the Integral Test for the series of positive real numbers.
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Show that the series —tan { — | converges.
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{ You may use, without proof, the result, -~ |In| cos| — = —fan|-
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[25 marks]

Investigate whether the following series is convergent or divergent by using

the Alternating Series Test
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Determine the convergence of the following series by using the limit form of

the Comparison Test J
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For each of the following series, determine whether it is absolutely convergent
or conditionally convergent.
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(40 marks]

(b) Find the interval of convergence of the power series
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[30 marksj

(¢) Find the power series representation of the function

Flz)= Lcm ; (i—)g)
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(You may assume, without proof, the result, | ———dr = —tan 1 (—) +
' Joxe A+ as a 0

where a, ¢ are arbitrary constants.)
[30 marks]
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(a) Let E b, be a rearrangement of an absolutely convergent series E .-

” n=1 n=1
Prove that
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> b, is absolutely convergent;
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§ by, = E .
n=1 n=1

(State, without proof, any result you may use.)

[25 marks]
(b) Given that, In(l + 2) = Z( nhiZ fur |z| < 1. Find the sum of the
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Rearrange the above series to obtain a different sum.

conditional convergence of the series E

[35 marks]
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(c¢) Let E a, be a conditionally convergent series. Prove that for every real
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number 5, there is a rearrangement é b, of 2 o, such that E by Sy

rel =l n=1

[40 marks]



