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MT 107 - THEORY OF SERIES
(Repeat)

Answer for all questions. Time: Two hours.

01. (a) Define the terms convergence and divergence of an infinite series of real numbers Z d; .
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(b) If series Z a, converges, show that a, -0 as n—>®.
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(c) Check the convergence of the following series:
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02. (a) State and prove the limit comparison test. Use this test to show that the series
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is convergent.
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(b) Write down the ratio test and use it to test the convergence of the series T a
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(c) Use root test to check the convergence of the series Z €

n=1

(P.T.0))



+

L TRy ;
03. (a) Show that the series Z ( )2 —sinnx is absolutely convergent.
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(b) Show that the alternative series Z (-)""a, is convergent, if

n=1
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(1) (an )n:l 18 a monotonically decreasing sequence; and

i) lim a, =0.
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(c) Define the convergence of a power series Z a, (x —a)". Find the radius of convergena
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and interval of convergence of the following power series:
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04. (a) Let the series Z M, be a convergent series of non- negative real numbers. If ZZ is 4
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series of complex numbers such thatZ, = x, +iy,, new and IZM , <M, for all ney,

then show that Z Z, is convergent.
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Hence, check whether the series Z—~—-—2—ﬂ converges or diverges.
=] H

(b) Show that the complex-valued function f (ZS , which has derivatives of all order, can be

expressed in a Taylor series '
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where Z is a complex number and " (z o) is the n™ derivative of f(Z2) at Z=17.

1+2 ), .
Hence expand ln(1 ?Wm a Taylor series about Z; = 0.
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