

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE -2009/2010

SECOND SEMESTER- (April / May, 2012)

MT 107 - THEORY OF SERIES

(Repeat)

Answer for all questions.

Time: Two hours.

- 01. (a) Define the terms convergence and divergence of an infinite series of real numbers $\sum_{n=1}^{\infty} a_n$.
 - (b) If series $\sum_{n=1}^{\infty} a_n$ converges, show that $a_n \to 0$ as $n \to \infty$.
 - (c) Check the convergence of the following series:

(i)
$$2+\frac{3}{2^3}+\frac{4}{3^3}+\frac{5}{4^3}+\dots$$
;

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 + 2n - 6}$$
.

02. (a) State and prove the limit comparison test. Use this test to show that the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

is convergent.

- (b) Write down the ratio test and use it to test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{3^n + 2}$.
- (c) Use root test to check the convergence of the series $\sum_{n=1}^{\infty} e^{-n^3 n^{n^2}}$

- 03. (a) Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \sin nx$ is absolutely convergent.
 - (b) Show that the alternative series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent, if
 - (i) $(a_n)_{n=1}^{\infty}$ is a monotonically decreasing sequence; and
 - (ii) $\lim_{n\to\infty} a_n = 0$.
 - (c) Define the convergence of a power series $\sum_{n=1}^{\infty} a_n (x-a)^n$. Find the radius of convergence and interval of convergence of the following power series:
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{5^n \sqrt{n+1}};$
 - (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n n(x+3)^n}{4^n}$.
- 04. (a) Let the series $\sum_{n=1}^{\infty} M_n$ be a convergent series of non-negative real numbers. If $\sum_{n=1}^{\infty} Z_n$ is a series of complex numbers such that $Z_n = x_n + i y_n$, $n \in \mathbb{N}$ and $\left| Z_n \right| \leq M_n$ for all $n \in \mathbb{N}$, then show that $\sum_{n=1}^{\infty} Z_n$ is convergent.

Hence, check whether the series $\sum_{n=1}^{\infty} \frac{(n+i)(1+ni)}{n^2}$ converges or diverges.

(b) Show that the complex-valued function $f\left(Z\right)$, which has derivatives of all order, can be expressed in a Taylor series

$$f(Z) = \sum_{n=0}^{\infty} \frac{f^{n}(Z_{0})}{n!} (Z - Z_{0})^{n}$$

where Z is a complex number and $f^n(Z_0)$ is the nth derivative of f(Z) at $Z = Z_0$.

Hence expand $\ln\left(\frac{1+Z}{1-Z}\right)$ in a Taylor series about $Z_0=0$.

.....END.....