

EASETRN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE 2012/2013 (March/April 2016)

FIRST SEMESTER CH 202 ANALYTICAL CHEMISTRY

uwers all questions

Time: One hour

(a) Explain the principle involved in the solvent extraction.

(15 Marks)

(b) V ml of aqueous solution (V_{aq}) which contains A_0 mol of solute X is brought into contact with V ml of immiscible organic solvents (V_{org}) . At equilibrium A_1 mol of solute X remains in the aqueous layer.

Show that

$$A_{\rm I} = \frac{A_{\rm 0}V_{aq}}{V_{aq} + V_{org}K}$$

Where K is Partition Coefficient of the solute of X between organic layer and aqueous layer

(25 Marks)

(c) Give the equation for the number of moles of solute X remaining after 'n' extraction (10 Marks)

(P. T. O)

- Distribution coefficient of the solute X between the organic layer and layer is 10. A 50.0 ml of 0.125 mol 1⁻¹ aqueous solution of X was extra 20.0 ml of organic solvent. How many times should it be extracted to concentration of X in aqueous to 0.005 mol 1⁻¹?

 (35)

 (e) Briefly discuss the applications of solvent extractions in industries.
- (a) "Atomic Absorption Spectroscopy is a spectroanalytical procedure
 quantitative determination of chemical elements using the absorption
 radiation by free atoms in the gaseous state". Explain this statement.
 - (b) Briefly describe the Atomic Absorption Spectroscopy by using a labelled write the function/s of each basic component of this Spectroscopy.

(20)

(c) Briefly describe the Paper Chromatography and explain the different type.

Chromatography with suitable diagrams.