



## EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

## COND EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (Nov./Dec., 2016)

## AM 207 - NUMERICAL ANALYSIS

(Proper)

Questions

Time: Two hours

Define what is meant by:

i. absolute error;

L relative error .

Use three digit rounding arithmetic to compute  $\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$  and determine the absolute and relative errors.

- i Find the third Taylor polynomial  $P_3(x)$  for the function  $f(x) = (x-1) \ln x$ about  $x_0 = 1$ . Use  $P_3(0.5)$  to approximate f(0.5).
- i. Find an upper bound for the error  $|f(0.5) P_3(0.5)|$  using the error formula, and compare it to the actual error.
- ii. Find a bound for the error  $|f(x) P_3(x)|$  in using  $P_3(x)$  to approximate f(x) on the interval [0.5, 1.5].

- 2. (a) i. Let  $x = \phi(x)$  be the rearrangement of the equation f(x) = 0 and definition,  $x_{n+1} = \phi(x_n)$ ,  $n = 0, 1, \ldots$ , with the initial value  $x_0$ . If  $\phi'(x)$  and is continuous such that  $|\phi'(x)| \leq K < 1$  for all x, then show that sequence  $x_n$  generated by the above iteration converges to the uniquence of the equation f(x) = 0.
  - ii. Find the fixed points of the function  $f(x) = \frac{5}{2}x(1-x)$  by solving f(x) and the interval of convergence for the fixed point method such that f(x) contains one of this fixed point.
  - (b) i. Define the order and the asymptotic error constant of the iteration of the compute the non-linear equation f(x) = 0.
    - ii. Obtain Newton Raphson method to compute the root of the above equin an interval [a, b].

Then use it to find the root of  $f(x) = \ln(x) - \sin(x)$  with an initial  $x_0 = 3$ , accurate to  $\epsilon = 10^{-2}$  in the function value.

3. (a) If  $f \in C^{n+1}[a,b]$  and  $P_n(x)$  is the Lagrange's interpolating polynomial interpolates the function f(x) at the distinct points  $x_0, x_1, \ldots, x_n$  in prove that for all  $\xi \in [a, b]$ , there exist  $\xi \in (a, b)$  such that

$$f(x) - P_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{n+1}(\xi)}{(n+1)!}$$
, where  $\xi \in (a, b)$ .

(b) i. Use Lagrange's method to find the interpolating polynomial for the data

| i          | 0 | 1     | 2     | 3     |
|------------|---|-------|-------|-------|
| $x_i$      | 0 | 7     | 2     | 3     |
| $\sin x_i$ | 0 | 0.841 | 0.909 | 0.141 |

- ii. Approximate sin(1.571) using the polynomial obtained in part (i).
- iii. Find an upper bound on the error for the Lagrange interpolating polynomeron on the interval [0, 3].

With the usual notations, the Simpson's rule is given by

$$\int_{x_{i-1}}^{x_{i+1}} f(x)dx = \frac{h}{3} \left( f_{i-1} + 4f_i + f_{i+1} \right) - \frac{1}{90} h^5 f^{(iv)}(\xi_i), \text{ where } \xi_i \in [x_i, x_{i+1}].$$

Obtain the composite Simpson's rule and show that the composite error is less than or equal to

$$\frac{1}{180}h^{4}(b-a)|f^{(iv)}(\xi)|, \quad \text{where } |f^{(iv)}(\xi)| = \max_{a \le x \le b} |f^{(iv)}(x)|.$$

Determine the step size h required in order for the composite Simpson's rule to approximate the integral  $\int_0^8 x \sin x$ 

with an error of at most  $10^{-4}$ .

Find the solution of the system of equations

wrect to three decimal places, using the Gauss-Seidel iteration method.