EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2013/2014

FIRST SEMESTER (February/March 2016)

PH 203PHYSICAL OPTICS-II

wer ALL Questions

Explain how diffraction causes limitation in the resolution of optical instruments and hence introduce *Raleigh criterion* for the limits of resolution. Describe the two categories of optical instruments by defining the resolving power.

Prove that the chromatic resolving power of a prism spectrometer with refractive index μ and ground face length t is given by

Resolving power =
$$t \left[\frac{d\mu}{d\lambda} \right]$$
.

The Fraunhofer diffraction intensity distribution due to N number of parallel slits, each of width b, and separated by distance d is given by

$$I = I_0 \left(\frac{\sin(\frac{\pi}{\lambda}b\sin\theta)}{\frac{\pi}{\lambda}b\sin\theta} \right)^2 \left(\frac{\sin(\frac{\pi}{\lambda}Nd\sin\theta)}{\sin(\frac{\pi}{\lambda}d\sin\theta)} \right)^2,$$

where θ is the diffraction angle.

- (a) Obtain the conditions for principal maxima and minima of
 - i. interference term
 - ii. diffraction term
- (b) A transmission grating having 5000 slits per centimeter is illuminated at normal incident by a light of wavelength 632 nm. If fifth order bright fringe is missing, calculate the slit width and the slit separation.