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8 i Define what is meant by the term subspace of a vector space.

Let V he a vector space Over 2 field F. Prove that a non-empty snbset 5 of

V is a subspace of V' if and only if ax+by € S forany 2.y € S and a,b € IF.

i, Which of the following sets are subspaces of R? under usual addition and

scalar multiplication? Justify your answer.
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R+ R, flz)>0,Vaxc R}. ¥or any [,§ € IV and for any

ion & as [ollows:

(J @ g)(z) = f(2)-9(x)
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for any ¢ € R. Prove that (V,®, ©) is a vector space over the set of real numbers



2. (a) Define what is meant by
1. a hmearly independent set of vectors;
i. a basis of a veetor space;
(b} Let V be a vector space. Show that

1. Any linearly independent set of vectors of 1V may be extended tog

. It L is a subspace of ¥V, then there exists a subspace M of
V = L@ M, where © denotes the divect sum.
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(b} Let B, ={(1,1,1), (1.2,3). (2, -1, It and By = {{1.1.9}, (0,11
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L. Fiad the matrix representation of 7', which is defin

to the basis By
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to the basis By,
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6. (a) Let n(> 2) be a positive Integer and J be the 7 X n matrix in
1
J.
n—1
(b) State the necessary and sufficient condition for a system of

entries is equal to 1, Show that (It

consistent.
Investigate for what values of a, b following system of linear equatia
L. a unique solution
. an infinite number of solutiong

1ii. no solution.

2 4+ 3.’1-‘2 + 55{'3 = =7
317] — 4:!,‘2 - 2.’1,'3 = 7

ar) -+ 11332 -+ 131,3, = }
(c} Use the Crammers rule to solve the following system of linear equafi

2;271—5:1’:2—}-2.'33 = 7
$f+2$2—4$3 = 3

333]_ e 41‘:__; - 6.'3'.'3 = 5
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