EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (Nov./Dec., 2016)

PM 201 - VECTOR SPACES AND MATRICES

wer all questions

Time: Three hours

- (a) Define what is meant by
 - (i) a vector space;
 - (ii) a subspace of a vector space.
- (b) Let $V = \{x : x > 0, x \in \mathbb{R}\}$. Define addition " \oplus " and scalar multiplication " \odot " as follows:

$$x \oplus y = xy$$

$$r \odot x = x^r$$

for all $r \in \mathbb{R}$ and for all $x, y \in V$. Prove that (V, \oplus, \odot) is a vector space over \mathbb{R} .

(c) Let \mathbb{Z}^3 be the set of tuples of integers with addition '+'and multiplication ' . ' are defined by

$$(l, m, n) + (l', m', n') = (l + l', m + m', n + n'),$$

$$\alpha.(l, m, n) = ([\alpha] l, [\alpha] m, [\alpha] n)$$

where $[\alpha]$ is the integer part of α and $l, m, n, l', m', n' \in \mathbb{Z}$. Is $(\mathbb{Z}^3, +, .)$ a vector space over the field \mathbb{R} ? Justify your answer.

- 2. (a) Let V be a vector space over the field F. Prove the following:
 - i. If v_1, v_2, \dots, v_m are linearly dependent vectors of V such that v_1, v_2, \dots, v_{m-1} are linearly independent, then $v_m \in \langle \{v_1, v_2, \dots, v_{m-1}\} \rangle$.
 - ii. If u_0 and v_0 are linearly independent vectors of V, and $u_1 = au_0 + bv_0$ and $v_1 = cu_0 + dv_0$, where $a, b, c, d \in F$, then u_1 and v_1 are linearly independent if and only if $ad bc \neq 0$.
 - (b) State the dimension theorem for two subspaces of a finite dimensional vector space.

Let U_1 and U_2 be subspaces of a vector space V. If $\dim U_1 = 3$, $\dim U_2 = 4$, $\dim V = 6$, show that $U_1 \cap U_2$ contains a non-zero vector.

If $\dim U_1 = 2$, $\dim U_2 = 4$, $\dim V = 6$, show that $U_1 + U_2 = V$ if and only if $U_1 \cap U_2 = \{0\}$.

- (c) If L is a subspace of a vector space V, prove that there exists a subspace M of V such that $V = L \oplus M$, where \oplus denotes the direct sum.
- 3. (a) Define:
 - (i) Range space R(T);
 - (ii) Null space N(T)

of a linear transformation T from a vector space V into another vector space W.

Find R(T), N(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined by:

$$T(x, y, z) = (x + 2y + 3z, x - y + z, x + 5y + 5z)$$
 for all $(x, y, z) \in \mathbb{R}^3$.

Verify the equation, dim $V = \dim(R(T)) + \dim(N(T))$ for the linear transformation T.

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y,z) = (x+2y, x+y+z, z), and let $B_1 = \{(1,1,1), (1,2,3), (2,-1,1)\}$ and $B_2 = \{(1,1,0), (0,1,1), (1,0,1)\}$ be bases for \mathbb{R}^3 . Find

- (i) The matrix representation of T with respect to the basis B_1 ;
- (ii) The matrix representation of T with respect to the basis B_2 by using the transition matrices.
- (a) Define the following terms:
 - (i) rank of a matrix;
 - (ii) row reduced echelon form of a matrix.
- (b) Let A be an $m \times n$ matrix. Prove the following:
 - (i) row rank of A is equal to column rank of A;
 - (ii) if B is a matrix obtained by performing an elementary row operation on A, then A and B have the same rank.
- (c) Find the rank of the matrix

(d) Find the row reduced echelon form of the matrix

$$\left(\begin{array}{ccccc}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right).$$

(a) With the usual notations, prove that

$$A \cdot (adjA) = (adjA) \cdot A = \det A \cdot I.$$

Hence, prove that $adj(adj A) = (det A)^{n-2}A$, where A is a $n \times n$ matrix.

- (b) Let J be the $n \times n$ real matrix with every entry equal to 1 and let $A = \alpha I_n + \beta J$, where α, β be real numbers and I_n be the identity matrix of order n.
 - i. Show that $\det A = \alpha^{n-1}(\alpha + n\beta)$.

ii. If $\alpha \neq 0$ and $\alpha \neq -n\beta$, prove that A is non-singular by finding an inverse for it of the form $\frac{1}{\alpha}(I_n + \gamma J)$.

Determine the inverse of the matrix

$$\begin{bmatrix}
5 & 3 & 3 & 3 & 3 \\
3 & 5 & 3 & 3 & 3 \\
3 & 3 & 5 & 3 & 3 \\
3 & 3 & 3 & 5 & 3 \\
3 & 3 & 3 & 3 & 5
\end{bmatrix}.$$

- 6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.
 - (b) Find the condition which must be satisfied by y_1, y_2, y_3 and y_4 in order that the system of linear equations

$$x_1 - x_3 + 3x_4 + x_5 = y_1,$$

$$2x_1 + x_2 - 2x_4 - x_5 = y_2,$$

$$x_1 + 2x_2 + 2x_3 + 4x_5 = y_3,$$

$$x_2 + x_3 + 5x_4 + 6x_5 = y_4$$

has solutions.

Find all the solutions for $y_1 = -3$, $y_2 = 5$, $y_3 = 6$ and $y_4 = -2$.

(c) State and prove Crammer's rule for 3×3 matrix and use it to solve the following system of linear equations:

$$x_1 + 2x_2 - x_3 = -4;$$

$$3x_1 + 5x_2 - x_3 = -5;$$

$$-2x_1 - x_2 - 2x_3 = -5.$$