

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND YEAR EXAMINATION IN SCIENCE - 2013/2014

SECOND SEMESTER - (OCT., 2016)

PM 204 - RIEMANN INTEGRAL

SEQUENCES AND SERIES OF FUNCTIONS

(PROPER & REPEAT)

Answer All Questions

Time Allowed: 2 Hours

- Q1. (a) Let I := [a, b] and let $f : I \to \mathbb{R}$ be a continuous function. Suppose that $P := \{x_0, x_1, \ldots, x_n\}$ is a partition of I and ξ_k s are the intermediate points such that $x_{k-1} \le \xi_k \le x_k$ for $k = 1, 2, \ldots, n$. Define what is it meant by the *Riemannn sum* of f, $S(P; f; \xi_k)$, corresponding to the partition P and the intermediate points ξ_k . [10 Marks]
 - (b) Let $f: I \to \mathbb{R}$ be a continuous function, and let I be divided into n equal sub-intervals of width $\Delta_k := (x_k x_{k-1}) = (b-a)/n$ for k = 1, 2, ..., n. If $\xi_k := a + k\Delta_k$, is the right endpoint of the sub-interval $I_k := [x_{k-1}, x_k]$, then show that the definite integral $\int_a^b f(x) dx$ is given by

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S(P; f; \xi_k) = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + \frac{k(b-a)}{n}\right) \frac{(b-a)}{n}.$$

[30 Marks]

Using the above result, find the value of the definite integral $\int_0^1 (2x+1) dx$.

You may use the result $\sum_{k=1}^{n} k = n(n+1)/2$.

[60 Marks]

- Q2. (a) State when the integral, $\int_a^b f(x) dx$, is said to be an improper integral of the
 - (i) first kind;
 - (ii) second kind;
 - (iii) third kind.

[30 Marks]

Determine the convergence of the following integrals:

- (i) $\int_{a}^{\infty} \frac{1}{x^{p}} dx$, where p is a constant and a > 0;
- (ii) $\int_0^\infty \frac{1}{x^3 + x^{1/3}} dx$.

[70 Marks]

- Q3. (a) Let $\{f_n\}$ be a sequence of functions such that $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$, and let $f: A \to \mathbb{R}$ be the limit function. Define what it means to say that
 - (i) the sequence $\{f_n\}$ converges pointwise on A to f;
 - (ii) the sequence $\{f_n\}$ converges uniformly on A to f.

[20 Marks]

(b) Consider the sequence $\{f_n\}$ of functions defined by

$$f_n(x) = \frac{\sin(nx+3)}{\sqrt{n+1}}$$
 for all $x \in \mathbb{R}$.

Determine whether $\{f_n\}$ is

- (i) pointwise convergent on \mathbb{R} .
- (ii) uniformily convergent on \mathbb{R} .

[80 Marks]

- Q4. (a) Let $\{f_n\}$ be a sequence of real-valued functions defined on a subset D of \mathbb{R} , and let $f: D \to \mathbb{R}$.
 - (i) Define what is it meant by saying that the infinite series $\sum_{n=1}^{\infty} f_n$ converges uniformly on D to f.
 - (ii) State the Cauchy Criterion theorem for the infinite series $\sum_{n=1}^{\infty} f_n$ to be uniformly convergent on D.

[20 Marks]

(b) (i) Prove the Weierstrass M-test. Let $\{M_n\}$ be a sequence of positive real numbers such that $|f_n(x)| \leq M_n$ for all $x \in D$, $n \in \mathbb{N}$, and let the series $\sum_{n=1}^{\infty} M_n$ be convergent, then $\sum_{n=1}^{\infty} f_n$ is uniformly convergent on D.

[50 Marks]

(ii) Use the Weierstrass M-test or otherwise to show that the series

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^p}$$

converges uniformly on \mathbb{R} for p > 1.

[30 Marks]

* * * * * * * * *