

EASTERN UNIVERSITY, SRI LANKA SECOND YEAR EXAMINATION IN SCIENCE - 2012/2013 FIRST SEMESTER(April/May, 2015) PM 203 - EIGENSPACE AND QUADRATIC FORMS

Answer all Questions

Time: Two hours

1. (a) Define the terms eigenvalue and eigenvector of a linear transformation. Find the eigenvalues and eigenvectors of the matrix

$$\left(\begin{array}{ccc}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right).$$

- (b) i. Prove that the eigenvalues of a Hermitian matrix are real.
 - ii. Show that a matrix A and its transpose A^T have the same characteristic polynomial.
 - iii. Let A and B be n-square matrices. Show that AB and BA have the same eigenvalues.
- (c) Orthogonally diagonalize the matrix

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}.$$

- 2. Define the term minimum polynomial of a square matrix.
 - (a) State the Cayley-Hamilton theorem.
 Find the minimum polynomial of the square matrix

- (b) Prove the following:
 - (i) If m(t) is the minimum polynomial of a matrix A and f(t) is a polynomial such that f(A) = 0, then m(t) divides f(t).
 - (ii) The characteristic and minimum polynomials of a matrix A have the irreducible factors.
- (c) Let $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A, B are square matrices and 0 denotes the matrix. Show that the minimum polynomial m(t) of M is the least commultiple of the minimum polynomials g(t) and h(t) of A and B, respective
- (a) Find an orthogonal transformation which reduces the following quadratic
 to a diagonal form

$$5x_1^2 + 6x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_2x_3 = 1.$$

(b) Simultaneously diagonalize the following pair of quadratic forms $^{4'}$

$$\phi_1 = x_1^2 + 2x_2^2 + 8x_2x_3 + 12x_1x_2 + 12x_1x_3,$$

$$\phi_2 = 3x_1^2 + 2x_2^2 + 5x_3^2 + 2x_2x_3 - 2x_1x_3.$$

4. (a) Define what is meant by an inner product on a vector space.

Let
$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$$
, where $x_i, y_i \in \mathbb{R}, i = 1, 2$

Let the inner product $\langle .,. \rangle$ be defined on \mathbb{R}^n as

$$< x, y > = xy^T = \sum_{i=1}^{n} x_i y_i.$$

Show that $(\mathbb{R}^n, <., .>)$ is an inner product space.

- (b) Prove that if M is a subspace of a finite inner product space V, then $V = M \oplus M^{\perp}$, where M^{\perp} is the orthogonal complement of M.
- (c) State the Gram Schmidt process. Find the orthonormal set for span of M in \mathbb{R}^4 , where

$$M = \{(1, 1, 1, 1)^T, (1, 1, 2, 4)^T, (1, 2, -4, -3)^T\}.$$