06 NOV 2015

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SECOND EXAMINATION IN SCIENCE - 2012/2013

FIRST SEMESTER (April/May, 2015)

PM 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time: Three hours

- (a) i. Let V be a vector space over a field F. Prove that, a subset S of V is a subspace of V if the following conditions are satisfied:
 - a. $S \neq \Phi$;
 - b. $x + y \in S$ for any $x, y \in S$;
 - c. $\alpha x \in S$ for any $\alpha \in \mathbb{F}$ and $x \in S$.
 - ii. Which of the following sets are subspaces of \mathbb{R}^2 under usual addition and scalar multiplication of vectors? Justify your answer.

a.
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1, x_2 \in \mathbb{Z} \right\};$$
b.
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 x_2 = 0, x_1, x_2 \in \mathbb{R} \right\}.$$

- (b) Prove that, $V = \{f \in C[a,b] : f((a+b)/2) = 0\}$, is a vector space with usual addition of functions and scalar multiplication, where the set C[a,b] denotes the set of all real-valued continuous functions defined on the interval $[a,b] \subseteq \mathbb{R}$.
- 2. (a) Define what is meant by
 - i. a linearly independent set of vectors;
 - ii. a basis of a vector space.
 - (b) Let V be a vector space. Show that

- i. any linearly independent set of vectors of V may be extended to a basis fo V;
- ii. if L is a subspace of V, then there exists a subspace M of V such that $V=L\oplus M$, where \oplus denotes the direct sum.
- (c) Let V be a vector space over the field \mathbb{F} .
 - i. Let $\{u_1, u_2, \dots, u_n\}$ be a linearly dependent subset of V with each $u_j \neq 0, \ j = 1, 2, \dots, n$. Prove that, there exist $u_i, \ 2 \leq i \leq n$, which is a linear combination of the preceding vectors.
 - ii. Let S be a subset of V and $u, v \in V$. If $u \in \langle S \cup \{v\} \rangle$ and $u \notin \langle S \rangle$, then prove that $v \in \langle S \cup \{u\} \rangle$.
 - iii. Let S, T be two subspaces of V with $S \cap T = \{0\}$ and let $\{s_1, s_2, \dots, s_m\}$ and $\{t_1, t_2, \dots, t_n\}$ be linearly independent subsets of S and T, respectively. Prove that $\{s_1, s_2, \dots, s_m, t_1, t_2, \dots, t_n\}$ is a linearly independent subset of V.
- 3. (a) Define what is meant by
 - i. the range space R(T);
 - ii. the null space N(T)

of a linear transformation T from a vector space V into another vector space W. Find R(T) and N(T) of the linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ defined by

$$T(\alpha + \beta x + \gamma x^2) = (\alpha - \beta, \beta - \gamma),$$

where \mathbb{P}_2 is the set of polynomials in one variable with real coefficients and of degree less than or equal to 2.

Verify the equation, dim $\mathbb{P}_2 = \dim(R(T)) + \dim(N(T))$, for the above linear transformation T.

(b) Let the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T(x, y, z) = (x + 2y, x + y + z, z)$$

and let $B_1 = \{(1, 1, 1), (1, 2, 3), (2, -1, 1)\}$ and $B_2 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ be bases of \mathbb{R}^3 .

i. find the matrix representation of T with respect to the basis B_1 ;

ii. using the transition matrix, find the matrix representation of T with respect to the basis B_2 .

- 4. (a) Define what is meant by
 - (i) elementary matrix;
 - (ii) row reduced echelon form of a matrix.
 - (b) Let A be a non-singular matrix. Prove the following:
 - (i) the inverse matrix of A, A^{-1} , can be obtained by applying the same finite elementary row operations, when A is transformed into the identity matrix;
 - (ii) if B is a matrix obtained by performing an elementary row operation on A, then A and B have the same rank.
 - (c) Find the rank of the matrix

(d) Find the row reduced echelon form of the matrix

$$\begin{pmatrix}
1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{pmatrix}.$$

- 5. Define what is meant by the matrix, adjoint of A, as applied to an $n \times n$ matrix $A = (a_{ij})$.
 - (a) With the usual notations, prove that

$$A \cdot (adjA) = (adjA) \cdot A = detA \cdot I.$$

Hence prove that, $adj(adj A) = (det A)^{n-2}A$, where $n \in \mathbb{N}$.

(b) Prove that, if
$$A = \begin{pmatrix} 2a & -a^2 \\ 1 & 0 \end{pmatrix}$$
, then $A^n = \begin{pmatrix} (n+1)a^n & -na^{n+1} \\ na^{n-1} & (1-n)a^n \end{pmatrix}$.

(c) By applying the appropriate row or column operations, prove that the determination of the matrix

$$\left(\begin{array}{cccccc}
1+a & 1 & 1 & 1 \\
1 & 1+b & 1 & 1 \\
1 & 1 & 1+c & 1 \\
1 & 1 & 1+d
\end{array}\right)$$

can be expressed as

$$abcd(1+1/a+1/b+1/c+1/d),$$

where $a, b, c, d \in \mathbb{R} \setminus \{0\}$.

6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.

Let the following system of linear equations be given

$$x_1 + x_2 + x_3 = 6$$

$$x_1 + 2x_2 + 3x_3 = 10$$

$$x_1 + 2x_2 + \lambda x_3 = \mu.$$

Investigate for what values of λ, μ , the above system of equations have

- i. a unique solution;
- ii. an infinite number of solutions;
- iii. no solution.
- (b) State and prove Crammer's rule for 3×3 matrix, and use it to solve the following system of linear equations

$$5x_1 - x_2 + 3x_3 = 10$$

$$6x_1 + 4x_2 - x_3 = 19$$

$$x_1 - 7x_2 + 4x_3 = -15.$$