

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD EXAMINATION IN SCIENCE - 2012/2013 SECOND SEMESTER (Sep./Oct., 2015)

PM 309 - NUMBER THEORY (PROPER & REPEAT)

Answer all Questions

Time: Two hours

- Q1. (a) Define what it means by the greatest common divisor gcd(a, b) of two integers a and b, not both zero. Find the gcd(1071, 462).
 - (b) Prove that if k is odd, then 2^{n+2} divides $k^{2^n} 1$ for all natural numbers n.
 - (c) A customer bought a dozen piece of fruits apple and orange for Rs 1.32. If an apple cost 3 cents more than an orange and more apples than oranges purchased, then determine how many pieces of each kind were bought.
- Q2. (a) State and prove the Euler's theorem.
 - (b) State and prove the Fermat's Little theorem.
 - (c) Prove that if n is relatively prime to 72, then $n^{12} \equiv 1 \pmod{72}$.
 - (d) If p is prime and congruent to 1 modulo 4, then show that $p = \left(\frac{(p-1)!}{2}\right)^2 \equiv -1 \pmod{p}$.

- Q3. Define what is meant by the following terms:
 - * Pseudo Prime;
 - * Carmichael Number.

Show that 561=3.11.17 is a Carmichael number and pseudo prime to the base?

- (a) Show that if gcd(m, n)=1, then $m^{\phi(n)}+n^{\phi(m)}\equiv 1 \pmod{mn}$.
- (b) Show that there are infinitely many pseudo primes to the base 2.
- (c) If $n = q_1 q_2, ..., q_k$, where q_j s are distinct primes that satisfy $(q_j 1)|(n-1)|_{\mathbb{R}}$ all j, then prove that n is a Carmichael number.
- Q4. (a) State what is meant by saying
 - (i) an integer a belongs to the exponent h modulo m;
 - (ii) an integer g is called a primitive root modulo m.
 - (b) If g is a primitive root modulo m, then prove that $g, g^2, ..., g^{\phi(m)}$ are mutually incongruent and form reduced residue system modulo m.
 - (c) Prove that, if a belongs to the exponent h modulo m and gcd(k,h) = d, then a^k belongs to the exponent $\frac{h}{d}$ modulo m.