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1. (a) Define what is meant by the convergent or divergent of an infinite series of real
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numbers E a,. Consider the series E a, whose nt" term is
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Show that the series Z a,, converges and find its sum.
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(b) A necessary condition for a series g a, to converge is that lim a, = 0.
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Is it true that, it is a sufficient condition for the convergence of E a,?
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Justify your answer.

(c) Prove that if a; + az + a3 + ... converges to a, then

1 1 1
‘j(ﬂll + {Lg) - 5(&-2 -+ EE-;;) + '2—((1.3 -+ (14) A+

Converges.
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2. (a) Let E a, and E b, be two series ol non-negative real numbers such that
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3. (a) Let
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. a, < kb, for all n € N and some positive real number k, and
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E b,, converges.
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Then show that E (i, CONVErEEs.
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1; ¢ I E ,, anc E b, are real series of non-negative terms such that
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If E a, is a convergent series of non-negative terms, then show that
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E Y~ converges.
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i, If the series E a, is absolutely convergent and the sequence {b,} is
n=1 :
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bounded, then prove thal E a,b, is absolutely convergent.
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If we replace absolutely convergent by convergent what happen to the

result of the above part? Justify your answer.
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E a, be a given series with real valued terms and define
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i 1t E a,, is conditionally convergent, then both E Py and E g, diverge.
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(b) Define the term sequence of bounded variation.
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Let E a, be a convergent real series and {b,} be a real sequence of
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bounded variation, then prove that Z anby 18 convergent.
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ii. In part (i), if the sequence {b,} of real numbers is bounded, what happens

to the result of that part? Justify your answer.
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iii. If E an is a convergent real series and {b,} is a monofp
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real sequence, then show that Z anb, is convergenti
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(a) Let Z 2, be a series of complex numbers.
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i. Show that the geometric series 1 4 z + 2% + ... has the sum ﬁ when
=
[l 1,
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... converges when z € E = {z/Re(z) >

Hence find the sum of the series.

(b) State the comparison test for series of complex numbers.

o0 . . .
1) (1 + .
Hence check whether the series E w—(i-i—@ converges or diverges.
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(c) Let f(z) = In(1 + z) where the branch which has the value zero when z = 0 is
considered.
i. Expand f(z) in a Taylor series about z = 0.
ii. Determine the region of convergence for the series in part (z).

1
iii. Expand In (#) in a Taylor series about z = 0.



