

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE -2008/2009

SECOND SEMESTER (Oct./Nov., 2010)

MT 107 - THEORY OF SERIES (PROPER & REPEAT)

Answer all Questions

Time: Two hours

1. (a) Define what is meant by the convergent or divergent of an infinite series of real numbers $\sum_{n=1}^{\infty} a_n$. Consider the series $\sum_{n=1}^{\infty} a_n$ whose n^{th} term is

$$\tan^{-1}\left(\frac{\frac{1}{n}-\frac{1}{(n+1)}}{1+\frac{1}{n(n+1)}}\right).$$

Show that the series $\sum_{n=1}^{\infty} a_n$ converges and find its sum.

(b) A necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge is that $\lim_{n\to\infty} a_n = 0$. Is it true that, it is a sufficient condition for the convergence of $\sum_{n=1}^{\infty} a_n$? Justify your answer.

(c) Prove that if $a_1 + a_2 + a_3 + \dots$ converges to a, then

$$\frac{1}{2}(a_1+a_2)+\frac{1}{2}(a_2+a_3)+\frac{1}{2}(a_3+a_4)+\ldots$$

converges.

- 2. (a) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series of non-negative real numbers such that
 - i. $a_n \leq kb_n$ for all $n \in \mathbb{N}$ and some positive real number k, and
 - ii. $\sum_{n=0}^{\infty} b_n$ converges.

Then show that $\sum_{n=1}^{\infty} a_n$ converges.

- (b) i. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are real series of non-negative terms such that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $n = 1, 2, \ldots$, and if $\sum_{n=1}^{\infty} b_n$ is convergent, then prove that $\sum_{n=1}^{\infty} a_n$ converges.
 - ii. If $\sum_{n=1}^{\infty} a_n$ is a convergent series of non-negative terms, then show that $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges.
- (c) i. If the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and the sequence $\{b_n\}$ is bounded, then prove that $\sum_{n=1}^{\infty} a_n b_n$ is absolutely convergent.
 - ii. If we replace absolutely convergent by convergent what happen to the result of the above part? Justify your answer.
- 3. (a) Let $\sum_{n=1}^{\infty} a_n$ be a given series with real valued terms and define

$$p_n = \frac{|a_n| + a_n}{2}, \quad q_n = \frac{|a_n| - a_n}{2}, \quad n = 1, 2, \dots$$

Then show that

- i. if $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, then both $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$ diverge.
- ii. if $\sum_{n=1}^{\infty} |a_n|$ converges then both $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$ converge and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} p_n \sum_{n=1}^{\infty} q_n$.
- (b) Define the term sequence of bounded variation.
 - i. Let $\sum_{n=1}^{\infty} a_n$ be a convergent real series and $\{b_n\}$ be a real sequence of bounded variation, then prove that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

- ii. In part (i), if the sequence $\{b_n\}$ of real numbers is bounded, what happens to the result of that part? Justify your answer.
- iii. If $\sum_{n=1}^{\infty} a_n$ is a convergent real series and $\{b_n\}$ is a monotonic and bounded real sequence, then show that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

a monotonic and Tounded regent.

1 1 FEB 2811

- 4. (a) Let $\sum_{n=1}^{\infty} z_n$ be a series of complex numbers.
 - i. Show that the geometric series $1+z+z^2+\ldots$ has the sum $\frac{1}{(1-z)}$ when |z|<1.
 - ii. Show that $1 + \frac{z}{1+z} + \frac{z^2}{(1+z)^2} + \dots$ converges when $z \in E = \{z/Re(z) > -\frac{1}{2}\}.$

Hence find the sum of the series.

- (b) State the comparison test for series of complex numbers. Hence check whether the series $\sum_{n=1}^{\infty} \frac{(n+i)(1+ni)}{n^2}$ converges or diverges.
- (c) Let $f(z) = \ln(1+z)$ where the branch which has the value zero when z = 0 is considered.
 - i. Expand f(z) in a Taylor series about z = 0.
 - ii. Determine the region of convergence for the series in part (i).
 - iii. Expand $\ln\left(\frac{1+z}{1-z}\right)$ in a Taylor series about z=0.