EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2001/2002

(April/May.'2002)

FIRST SEMESTER

MT 201 - VECTOR SPACES AND MATRICES

Answer all questions

Time: Three hours

- 1. (a) Explain what is meant by
 - i. a vector space;
 - ii. a subspace of a vector space.
 - (b) Let V be a vector space over a field F and W be a non-empty subset of V. Prove that W is a subspace of V if, and only if $ax + by \in W$ for every $x, y \in W$ and for every $a, b \in F$.
 - (c) Let $V = \{x \mid x \in \Re, x > 0\}$. Define addition and scalar multiplication as follows:

$$x \oplus y = xy$$
 for $x, y \in V$,
 $r \odot x = x^r$ for $r \in \Re$, $x \in V$.

Show that (V, \oplus, \odot) is a vector space over \Re .

(d) Which of the following sets are subspaces of \Re^3 ? In each case justify your answer.

i.
$$W_1 = \{(x, y, z) \in \Re^3/x + y + z = 1\}$$

ii.
$$W_3 = \{(x, y, z) \in \Re^3/x + y^2 = 0\}$$

- 2. (a) Define the following terms:
 - i. A linearly independent set of vectors;
 - ii. A basis for a vector space.
 - (b) Prove that the non-zero vectors v_1, v_2, \dots, v_n of a vector space V over the field F are linearly dependent if and only if one of them say $v_i (2 \le i \le n)$ is a linear combination of the preceding vectors.
 - (c) i. State the Dimension Theorem.

ii. Let
$$U = \langle \{(1, 1, 0, -1), (1, 2, 3, 0), (2, 3, 3, -1)\} \rangle$$

 $\dot{W} = \langle \{(1, 2, 2, -2), (2, 3, 2, -3), (1, 3, 4, -3)\} \rangle$.

Find

A. $\dim(U+W)$;

B. $\dim(U \cap W)$.

- 3. (a) Define
 - i. Range space R(T);
 - ii. Null space N(T);

of a linear transformation T from a vector space V into another vector space W.

Let T be a linear transformation from a finite dimensional vector space V into a finite dimensional vector space W. Prove that

the image of any linearly independent subset of V is a linearly independent subset of W if, and only if $N(T) = \{0\}$.

(b) Find R(T) and N(T) of the linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by

$$T(x, y, z) = (x - y + 2z, 2x + y, -x - 2y + 2z).$$

Verify the equation dim $V = \dim N(T) + \dim R(T)$ for the above linear transformation.

(c) The linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is defined by

$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, x_1 - x_3).$$

In \Re^2 , $B_1 = \{(1,1), (1,-1)\}$ is a basis, and in \Re^3 , $B_2 = \{(1,1,0), (0,1,1), (1,0,1)\}$ is a basis. Obtain

- i. the matrix of T with respect to the standard basis of \Re^3 and the basis B_1 of \Re^2 .
- ii. the matrix of T with respect to the basis B_2 of \Re^3 and the standard basis of \Re^2 .
- iii. the matrix of T with respect to the basis B_2 of \Re^3 and the basis of \Re^2 .
- 4. (a) Define the following terms as applied to an $n \times n$ matrix $A = (a_{ij})$
 - i. Row space,
 - ii. Echelon form,
 - iii. Row reduced echelon form.
 - (b) Let A be an $n \times n$ matrix. Prove that,

- it row rank of A is equal to column rank of A;
- ii. if B is an $n \times n$ matrix, obtained by performing an elementary row operation on A, then r(A) = r(B).
- (c) Find the rank of the matrix

$$\begin{pmatrix} 1 & 2 & -3 \\ 2 & 1 & 0 \\ -2 & -1 & 3 \\ -1 & 4 & -2 \end{pmatrix}.$$

(d) Find the row reduced echelon form of the matrix

$$\begin{bmatrix} 5 & 6 & 8 & -1 \\ 4 & 3 & 0 & 0 \\ 10 & 12 & 16 & -2 \\ 1 & 2 & 0 & 0 \end{bmatrix}.$$

- 5. (a) Define the the following terms as applied to an $n \times n$ matrix $A = (a_{ij})$.
 - i. Cofactor A_{ij} of an element a_{ij} ,
 - ii. Adjoint of A.

Prove that '

$$A \cdot (adjA) = (adjA) \cdot A = detA \cdot I$$

where I is the $n \times n$ identity matrix.

(b) If A and B are two $n \times n$ non-singular matrices, then prove that i. $adj(\alpha A) = \alpha^{n-1} \cdot adjA$ for every real number α ,

ii.
$$adj(AB) = (adjB)(adjA)$$
,

iii.
$$adj(A^{-1}) = (adjA)^{-1}$$
,

iv.
$$adj(adjA) = (det A)^{n-2}A$$
,

v.
$$adj(adj(adjA)) = (detA)^{n^2-3n+3}A^{-1}$$
.

(c) Find the inverse of the matrix

6. (a) State the Necessary and Sufficient condition for a system of linear equations to be consistent.

The system of equations

$$x_1 + 3x_2 + x_3 = 5,$$

$$3x_1 + 2x_2 - 4x_3 + 7x_4 = k + 4,$$

$$x_1 + x_2 - x_3 + 2x_4 = k - 1,$$

is known to be consistent. Find the value of k and the general solution of the system.

(b) State Cramer's rule and use it to solve the following system of linear equations.

$$x + 2y + 3z = 10,$$

 $2x - 3y + z = 1,$
 $3x + y - 2z = 9.$