## EASTERN UNIVERSITY FACULTY OF AGRICULTURE

SECOND YEAR FIRST SEMESTER EXAMINATION 2000/2001 INTRODUCTORY STATISTICS (CSC 2103)

## ANSWER ALL QUESTIONS TIME ALLOWED: 2 HOURS

1. Five traps were set in a rice field at different locations. The number of mice captured in each trap during a period of one month is shown in Table 1. One trap (B) caught fewer mice than the others. Using a suitable statistical test, check whether the trap B differs significantly from the other traps in trapping mice.

Table 1

| Traps          | A  | В | C  | D  | E  |
|----------------|----|---|----|----|----|
| Number of mice | 23 | 7 | 25 | 19 | 21 |
| caught         |    |   |    |    |    |

2. An experiment was conducted to evaluate yield performance of six rice varieties along with a control variety, BG 94-1 in a randomized complete block design with four replicates. The results are shown in Table 2.

Table 2

## Yield (Metric -tons)/Hectare

| Variety | R1  | R2  | R3  | R4  |
|---------|-----|-----|-----|-----|
| A       | 4.5 | 5.0 | 4.9 | 5.0 |
| В       | 2.0 | 1.9 | 1.8 | 2.1 |
| C       | 4.7 | 4.6 | 4.1 | 5.0 |
| D       | 3.0 | 2.9 | 2.8 | 2.8 |
| E       | 3.1 | 3.7 | 3.7 | 3.6 |
| F       | 4.2 | 4.5 | 3.9 | 4.1 |
| BG94-1  | 3.0 | 3.1 | 2,9 | 3.0 |

$$\Sigma_{\rm X} = 99.9$$

$$\Sigma x^2 = 383.55$$

- a. Determine the sample mean for each variety.
- b. Develop an ANOVA table for this experiment
- c. Compare the mean yield of varieties with the standard variety, using Least Significant Difference test as a tool.

3. The results below show the density of two weed species A and B in a given area. Measurements were taken by a quadrant measuring 0.5 m X 0.5m. The quadrant is thrown for 30 times and the number of weed species trapped in each occasion is listed below. The total area of the lawn is one hectare.

Species A

| 9  | 8 | 7 | 6 | 7  | 8 | 9  | 9  | 3 | 9  |
|----|---|---|---|----|---|----|----|---|----|
| 0  | 0 | 2 | 6 | 14 | 5 | 8  | 19 | 0 | 7  |
| 18 | 3 | 9 | 2 | 1  | 1 | 16 | 13 | 8 | 11 |

Species B

| 5 | 4 | 0 | 1 | 0  | 2 | 16 | 6 | 0  | 7  |
|---|---|---|---|----|---|----|---|----|----|
| 3 | 1 | 0 | 0 | 11 | 0 | 2  | 3 | 19 | 14 |
| 0 | 3 | 0 | 0 | 1  | 4 | 6  | 8 | 13 | 0  |

- a) Propose a null hypothesis to the experiment above.
- b) Calculate mean, standard deviation, standard error for population A
- c) Compare the means of the populations A and B and comment on the results.
- d) Calculate the estimated number of weed species of A and B in the lawn.
- 4. The relationship between weight gain and temperature was determined for an insect.

| Temp °C         | 6  | 8  | 10 | 12 | 141 | 16 | 18 | 20 | 22 | 24 | 26 | 28 |
|-----------------|----|----|----|----|-----|----|----|----|----|----|----|----|
| Weight<br>in mg | 10 | 10 | 9  | 5  | 7   | 4  | 1  | 2  | 1  | 2  | 1  | 0  |

$$\sum x = 204 \quad \sum y = 52$$

$$\Sigma xy = 606$$
  $\Sigma x^2 = 4040$   $\Sigma y^2 = 382$ 

$$\Sigma x^2 = 4040$$

$$\Sigma v^2 = 382$$

- Indicate the dependent and Independent variables. (i)
- (ii) Draw A Scatter Diagram
- Calculate the coefficient of correlation and test its significance. (iii)
- Fit a regression line to the above data (iv)
- Predict the weight gain at 190C (v)
- Comment on the relationship (vi)