

SECOND EXAMINATION IN SCIENCE 2003/2004

(June/July'2005) (Repeat)

SECOND SEMESTER

MT 204 - RIEMANN INTEGRAL & SEQUENCE AND SERIES OF FUNCTIONS

Answer all questions

Time: Two hours

- 1. Let f be a bounded real valued function on [a, b]. Explain what is meant by the statement that "f is Riemann integrable over [a, b]".
 - (a) With the usual notations, prove that a bounded real valued function f on [a, b] is Riemann integrable if and only if for given $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U(P, f) - L(P, f) < \epsilon.$$

- (b) Prove that if f is continuous on [a, b], then
 - i. f is Riemann integrable over [a, b],
 - ii. the function $F:[a,b] \longrightarrow \mathbb{R}$ defined by $F(x) = \int_a^x f(t) \ dt$ is differentiable on [a,b] and $F'(x) = f(x) \quad \forall \quad x \in [a,b]$.

- 2. When is an integral $\int_a^b f(x) dx$ said to be an improper integral of the first kind, the second kind and the third kind?
 - (a) If $0 \le f(x) \le g(x)$ for all $[a, \infty)$ and if f(x) and g(x) are continuous on $[a, \infty)$. Prove that

(i) if
$$\int_{a}^{\infty} g(x)dx$$
 converges then $\int_{a}^{\infty} f(x)dx$ converges.
(ii) if $\int_{a}^{\infty} f(x)dx$ diverges then $\int_{a}^{\infty} g(x)dx$ diverges.

- (b) Discuss the convergence of the improper integral $\int_a^b \frac{dx}{(x-a)^p}$.
- (c) Test the convergence of the following:

(i)
$$\int_0^\infty \frac{dx}{x^2 + \sqrt{x}} dx \; ;$$

(ii)
$$\int_0^1 \frac{\sin^{-1} x}{\sqrt{1-x} \ dx}$$
.

- 3. Define the term "Uniform convergence" of a sequence of functions.
 - (a) Prove that the sequence of functions defined on E converges uniformly on E if and only if every $\epsilon > 0$ there exists an integer N such that $|f_n(x) f_m(x)| < \epsilon$ for all $x \in E$ and for all $m, n \geq N$.
 - (b) Let $\{f_n\}$ be a sequence of functions that are integrable on [a,b] and suppose that $\{f_n\}$ converges uniformly on [a,b] to f. Prove that f is integrable and $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.
 - (c) Provide a sequence of functions $\{g_n\}$ converges to a function g on an interval [0,1] such that $\int_0^1 g_n(x) dx$ and $\int_0^1 g(x) dx$ exist and $\lim_{n\to\infty} \int_0^1 g_n(x) dx \neq \int_0^1 g(x) dx$.

4. (a) Let $\{f_n\}$ be a sequence of real valued functions defined on $E \subseteq \mathbb{R}$. University Suppose that for each $n \in \mathbb{N}$, there is a constant M_n such that

$$|f_n(x)| \le M_n$$
, for all $\in E$

where $\sum M_n$ converges. Prove that $\sum f_n$ converges uniformly on E.

(b) Let $\{f_n\}$, $\{g_n\}$ be two sequences of functions defined over a non empty set $E \subseteq \mathbb{R}$. Suppose also that

i.
$$|S_n| = |\sum_{k=1}^n f_k(x)| \le M$$
 for all $x \in E$, all $n \in \mathbb{N}$.

ii.
$$\sum_{k=1}^{\infty} |g_{k+1}(x) - g_k(x)|$$
 converges uniformly in E .

iii.
$$g_n \longrightarrow 0$$
 uniformly in E .

Prove that
$$\sum_{k=1}^{\infty} f_k(x)g_k(x)$$
 converges uniformly in E .

(c) Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+ax^2}$ where a>0 converges uniformly in \mathbb{R} .