

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2005/2006 SECOND SEMESTER(March/April, 2008) MT 307 - CLASSICAL MECHANICS III (PROPER AND REPEAT)

Answer all Questions

Time: Three hours

(a) Two frame of references S and S' have a common origin O and S' rotates with $Q1$. angular velocity \underline{w} with respect to S. At a time t, a particle P has position vector \underline{r} with respect to O . With the usual notation, prove that

$$
\frac{d^2\underline{r}}{dt^2} = \frac{\partial^2\underline{r}}{\partial t^2} + 2\underline{\omega} \wedge \frac{\partial \underline{r}}{\partial t} + \frac{d\underline{\omega}}{dt} \wedge \underline{r} + \underline{\omega} \wedge (\underline{\omega} \wedge \underline{r}).
$$

You may use the following vector identity:

$$
\frac{d(\)}{dt}=\frac{\partial(\)}{\partial t}+\underline{\omega}\wedge(\) .
$$

 $[30$ marks

(b) A particle is released from rest at a height h near the earth's surface and at a latitude λ through a resisting medium with resistance $-k\frac{\partial r}{\partial t}$, where $\frac{\partial r}{\partial t}$ is the velocity of the particle relative to a frame of reference fixed on the earth's surface. Show that the deviation of the particle towards the East at time t is given by

$$
\frac{2\omega gt (1+e^{-kt})}{k^2} \cos \lambda - \frac{4\omega g (1-e^{-kt})}{k^3} \cos \lambda
$$

[70 marks]

Q2. (a) Define the following terms:

別八月

800T Y

- (i) Linear momentum;
- (ii) Angular momentum.
- (b) With the usual notations, obtain the following relations for a syste particles.

(i)
$$
\underline{H} = \underline{r_G} \wedge M\underline{V_G} + \underline{H_G};
$$

(ii) $T = T_G + \frac{1}{2}M V_G^2;$

where G indicates the centre of mass of the system. $[35]$

- (c) A uniform circular disc of radius R and mass M is rigidly mounted on \circ of a thin light shaft CD of length L . The shaft is normal to the disc centre C . The disc rolls on a rough horizontal plane, D being fixed plane by a smooth universal joint. If the centre of the disc rotates w slipping about the vertical through D with constant angular velocity Ω the angular velocity, the kinetic energy and the angular momentum of the about D . about D . $[45 \text{ m}]$
- Q3. (a) With the usual notation, derive the Euler's dynamical equations of motiona rigid body having a fixed point. $|35 \rangle$ m
	- (b) Using part (a), show that the kinetic energy and angular momentum α torque-free motion of a rigid body are constants. $[25 \text{ m}]$
	- (c) A uniform rectangular plate of mass m with the length and breadth 2σ 2b, respectively, spins with constant angular velocity ω about a diagonal. the couple which must act on the plate in order to maintain this motion.

[40 m

I20

Q4. Consider the motion of a thin circular disc of centre O , radius r and mass m rolls on a horizontal plane. Let P be the point of contact of the disc with the p which is supposed to be rough in order to prevent slipping. Let OQ be the ver and θ be the inclination of the plane of the disc with the vertical, and let the a between a fixed horizontal direction and the tangent to the disc at P be denoted ψ . If i, j and k are an orthogonal triad of unit vectors directed along X, Y an axes, respectively, such that \underline{k} is perpendicular to the disc at its centre O and a.long OP,

- (a) obtain the general expressions for the components of reaction on the 40 marks the point P of contact.
- (b) in case of the disc rolling steadily along a circular path, with usual notation, show that the motion satisfies the differential equation

$$
I_{xx}\sin\theta\cos\theta\,\frac{d^2\psi}{dt^2}-(I_{zz}+mr^2)\omega_z\cos\theta\,\frac{d\psi}{dt}-mgr\sin\theta=0.
$$

 $[60$ marks

(a) With the usual notations, derive the Lagrange's equations Q5.

$$
\Delta \left(\frac{\partial T}{\partial \dot{q}_j} \right) = \sum_i I_i \frac{\partial r_i}{\partial q_j}
$$

 $|40 \text{ marks}|$

for the impulsive motion.

- (b) Two rods AB and BC , each of length a and mass m , are frictionlessly joined at B and lie on a frictionless table. Initially the two rods are collinear. An impulse \underline{P} is applied at point A in a direction perpendicular to the line ABC . Show that the magnitudes of the velocities of the centres of mass of rods BC and AB , respectively, immediately after the impulse is applied are given by [60 marks] $rac{P}{4m}$ and $rac{5P}{4m}$.
- (a) If f and g are two functions of the dynamical variables \vec{q} , \vec{p} and time t, define Q6. the Poisson bracket (f, g) for f and g. If q_1 and q_2 are generalized coordinates and p_1 and p_2 are the corresponding generalized momenta, find the Poisson [25 marks] bracket (X,Y) when $X = q_1^2 + q_2^2$ and $Y = 2p_1 + p_2$.
	- (b) For any function $g(q, p, t)$, show that

$$
\frac{dg}{dt} = (g, H) + \frac{\partial g}{\partial t}
$$

and hence, if f and g are not explicit functions of time, show that

$$
(f, (g, H)) + (g, (H, f)) + (H, (f, g)) = 0,
$$

where H is the Hamiltonian.

铷

(c) Using the result obtained in (b) and the the equation of motion in Poisson bracket, show that, if f and g are constants through out the motion, (f, g) is [30 marks] also constant through out the motion.

 $[45$ marks