Paren University, Sri Lanks

EASTERN UNIVERSITY, SRI LANKA FIRST YEAR EXAMINATION IN SCIENCE

2002/2003 & 2002/2003 (A)

SECOND SEMESTER

(April/May '2004)

MT 104 - DIFFERENTIAL EQUATIONS

AND

FOURIER SERIES

Answer All Questions

Time Allowed: 3 Hours

Q1. (a) State the necessary and sufficient condition for the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

to be exact.

[10 Marks]

Hence solve the following differential equation

$$\left(2xy\,e^{x^2y} + y^2\,e^{xy^2} + 1\right)dx + \left(x^2\,e^{x^2y} + 2xy\,e^{xy^2} - 2y\right)dy = 0.$$

[20 Marks]

(b) By differentiating the equation

$$\int \frac{f(xy) + F(xy)}{f(xy) - F(xy)} \, \frac{d(xy)}{xy} + \log \frac{x}{y} = C,$$

where C is a constant, verify that $\frac{1}{xy\{f(xy)-F(xy)\}}$ is an integrating factor of

$$yf(xy) dx + xF(xy) dy = 0.$$

Hence solve the differential equation

$$y(2xy + 1) dx + x(1 + 2xy - x^3y^3) dy = 0.$$

[20 Marks]

(c) If $\tan x$ is a particular solution of the following non-linear Riccati differential equation

$$\frac{dy}{dx} = 1 + y^2,$$

then obtain the general solution of the differential equation .

[30 Marks]

Q2. (a) If $F(D) = \sum_{i=0}^{n} p_i D^i$, where $D \equiv \frac{d}{dx}$ and p_i , i = 1, ..., n, are constants with $p_0 \neq 0$, then prove the following formulas:

(i)
$$\frac{1}{F(D)}e^{\alpha x} = \frac{1}{F(\alpha)}e^{\alpha x}$$
, α is a constant and $F(\alpha) \neq 0$;

(ii)
$$\frac{1}{F(D)}e^{\alpha x}V = e^{\alpha x}\frac{1}{F(D+\alpha)}V$$
, where V is a function only of x.

[40 Marks]

(b) Find the general solution of the following differential equations by using the results in (a).

(i)
$$(D^3 - 5D^2 + 8D - 4)y = e^{2x} + 2e^x + 3e^{-x}$$

(ii)
$$(D^3 - 3D^2 - 6D + 8)y = xe^{-3x}$$
.

[60 Marks]

Q3. (a) If $x = e^t$, then show that

$$x\frac{d}{dx} \equiv \mathcal{D}, \quad x^2 \frac{d^2}{dx^2} \equiv \mathcal{D}^2 - \mathcal{D},$$

and

$$x^3 \frac{d^3}{dx^3} \equiv \mathcal{D}(\mathcal{D} - 1)(\mathcal{D} - 2),$$

where $\mathcal{D} \equiv \frac{d}{dt}$.

[20 Marks]

Use the above results to find the general solution of the following differential equation

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}.$$

[30 Marks]

(b) With $D \equiv \frac{d}{dt}$, solve the following simultaneous differential equations

$$D^2x - m^2y = 0,$$

$$D^2y + m^2x = 0.$$

[50 Marks]

Q4. Use the method of Frobenius to find the general solution of

$$(x-1)^2 \frac{d^2y}{dx^2} + (3x^2 - 4x + 1)\frac{dy}{dx} - 2y = 0$$

by expanding about x = 1.

[100 Marks]

Q5. (a) Solve the following system of differential equations:

(i)
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$
;

(ii)
$$\frac{dx}{x(2y^4 - z^4)} = \frac{dy}{y(z^4 - 2x^4)} = \frac{dz}{z(x^4 - y^4)}$$
.

[30 Marks]

(b) Write down the condition of integrability of the total differential equation

$$P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0.$$

[5 Marks]

Hence solve the following equation

$$yz\log z\,dx - zx\log z\,dy + xy\,dz = 0.$$

[15 Marks]

(c) Find the general solution of the following linear first-order partial differential equations:

(i)
$$(y-z)p + (z-x)q = y-x$$
;

(ii)
$$(x^2 + y^2 - yz)p - (x^2 + y^2 - xz)q = z(x - y)$$
.

[30 Marks]

(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following non-linear first-order partial differential equation

$$2xz - px^2 - 2qxy + pq = 0.$$

Here,
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

[20 Marks]

Q6. (a) Prove that if $-\pi \le x \le \pi$ and a is not an integer, then

$$\cos ax = \frac{2a\sin a\pi}{\pi} \left\{ \frac{1}{2a^2} - \frac{\cos x}{a^2 - 1} + \frac{\cos 2x}{a^2 - 4} - \dots \right\}.$$

[20 Marks]

Use the above result to show that

$$\frac{a\pi}{\sin a\pi} = 1 + 2\sum_{n=1}^{\infty} \frac{(-1)^n a^2}{a^2 - n^2}.$$

[20 Marks]

(b) Use Fourier transform to solve Dirichlet problem, that is, U(x, y) satisfies the two-dimensional form of Laplace's equation

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0, \ -\infty < x < \infty, \ y \ge 0,$$

subject to the boundary conditions

$$U(x,0) = f(x), -\infty < x < \infty,$$

 $U(x,0) \rightarrow 0 \text{ as } \sqrt{x^2 + y^2} \rightarrow \infty.$

[50 Marks]

- (c) Prove the following identities for Bessel functions:
 - (i) $J_{-n}(x) = (-1)^n J_n(x), \quad \nu = n \ge 1;$
 - (ii) $J'_{\nu} \frac{\nu}{x} J_{\nu}(x) = -J_{\nu+1}(x)$.

FIRST EXAMINAT

[10 Marks]